Is Span{W} a Subspace of Vector Space V?

veege
Messages
4
Reaction score
0
Homework Statement

Suppose V is a vector space with operations + and * (under the usual operations) and W = {w1, w2, ... , wn} is a subset of V with n vectors. Show Span{W} is a subspace of V.



The attempt at a solution

I know that to show a set is a subspace, we need to show closure under addition and multiplication. I don't where to go from there. Any suggestions?
 
Physics news on Phys.org
Maybe start by reviewing what Span{W} means. Quote the definition in your next post, ok?
 
Start with multiplication.

Span W = c*a*w1+...+c*an*wn

Does this exist in V?

For addition, add Span W to Span R or whatever you want to call it.
 
Dick said:
Maybe start by reviewing what Span{W} means. Quote the definition in your next post, ok?



Dustinsfl said:
Start with multiplication.

Span W = c*a*w1+...+c*an*wn

Does this exist in V?

For addition, add Span W to Span R or whatever you want to call it.


The span is basically the set of all linear combinations of the vectors w1, w2, ... , wn. So then, I can define some vector S and some vector T in terms of w's:

S = c1*w1 + c2*w2 + ... + cn*wn

T = k1*w1 + k2*w2 + ... + kn*wn

I think I get it now. I can see how S + T will be closed, and some constant a*S will be closed.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top