Is the Fabry-Perot Interference Dependent on Pulse Duration?

AI Thread Summary
Fabry-Perot interference is influenced by pulse duration, as a finite-duration pulse encompasses a range of frequencies. For effective interference, the pulse must overlap with its reflected counterparts, which is contingent on temporal coherence. If the pulse duration is too short relative to the cavity dimensions, interference may not occur effectively. The initial pulse loses energy through reflections but retains frequency components that could be lost in a single-frequency analysis. Continuous wave (CW) analysis is valid only when the structure's dimensions are smaller than the temporal coherence length of the pulse.
IcedCoffee
Messages
20
Reaction score
4
I get that a single (optical) pulse is a superposition of continuous frequency components of its spectrum, but I'm a bit confused how Fabry-Perot interference can be interpreted in time domain.

In a single-frequency explanation, the idea is that the incident wave goes through multiple reflections inside a simple FP interferometer consisting of two partially transparent mirror. At resonant frequencies those reflected waves will interfere constructively (or destructively) and get transmitted (or reflected) completely.

But in a broadband pulse, it seems like:
(1) Given a long enough FP cavity, each pulse won't interfere with each other as they are separated in time.
(2) If we consider the initial incident pulse, it will simply go though the FP cavity, losing some of its energy due to the two reflections. However, it will still retain frequency components that would have been completely reflected due to destructive interference in the single-frequency picture.
EDIT: Ok, I guess the multi-reflected pulses that follow this initial pulse will have time interval based on the FP cavity. This will remove the destructively-interfering frequency components when I take the Fourier transform of the total output signal... But if I'm doing an experiment in which I record only the initial pulse and disregard the multi-reflected pulses, the FP interferometer will not remove those frequencies, right? And certainly, energy in that frequency component gets transferred through the FP interferometer?

So the output of the system is not a superposition of the single-frequency outputs? Or is there something wrong with my conjectures (1) & (2)?

Thank you all in advance :)
 
Last edited:
Science news on Phys.org
You are right. Any real-world pulse is of finite time-duration, and the smaller this time is the broader the pulse is in the frequency domain. A pulse can only interfere in a Fabry Perot interferometer if the pulse and the reflected pulse overlap, i.e., if the pulse is broad enough in the time (i.e., narrow enough in the frequency) domain. That's also known as (temporal) coherence. See the nice Wikipedia article (particularly the section about temporal coherence):

https://en.wikipedia.org/wiki/Coherence_(physics)
 
  • Like
Likes IcedCoffee and Ibix
vanhees71 said:
You are right. Any real-world pulse is of finite time-duration, and the smaller this time is the broader the pulse is in the frequency domain. A pulse can only interfere in a Fabry Perot interferometer if the pulse and the reflected pulse overlap, i.e., if the pulse is broad enough in the time (i.e., narrow enough in the frequency) domain. That's also known as (temporal) coherence. See the nice Wikipedia article (particularly the section about temporal coherence):

https://en.wikipedia.org/wiki/Coherence_(physics)

Thank you for your reply! The Wikipedia page was really helpful too.
So can I say that CW analysis of a structure is only valid when the structure's dimension is smaller than the temporal coherence length of the pulse?
 
Thread 'A quartet of epi-illumination methods'
Well, it took almost 20 years (!!!), but I finally obtained a set of epi-phase microscope objectives (Zeiss). The principles of epi-phase contrast is nearly identical to transillumination phase contrast, but the phase ring is a 1/8 wave retarder rather than a 1/4 wave retarder (because with epi-illumination, the light passes through the ring twice). This method was popular only for a very short period of time before epi-DIC (differential interference contrast) became widely available. So...
I am currently undertaking a research internship where I am modelling the heating of silicon wafers with a 515 nm femtosecond laser. In order to increase the absorption of the laser into the oxide layer on top of the wafer it was suggested we use gold nanoparticles. I was tasked with modelling the optical properties of a 5nm gold nanoparticle, in particular the absorption cross section, using COMSOL Multiphysics. My model seems to be getting correct values for the absorption coefficient and...
After my surgery this year, gas remained in my eye for a while. The light air bubbles appeared to sink to the bottom, and I realized that the brain was processing the information to invert the up/down/left/right image transferred to the retina. I have a question about optics and ophthalmology. Does the inversion of the image transferred to the retina depend on the position of the intraocular focal point of the lens of the eye? For example, in people with farsightedness, the focal point is...
Back
Top