Is this an error in the text? (Gas Turbine Combustion Chamber)

Click For Summary
SUMMARY

The discussion centers on the accuracy of a textbook description of gas turbine combustion chambers. The text incorrectly suggests that the combustion chamber is solely for cooling combustion products, while in reality, it includes both a fuel-burning core and a cooling air flow section. The combustion process occurs within the core burner section, where compressed air mixes with fuel, while additional air cools the combustion products before they exit to drive the turbine. This clarification highlights the need for precise language in educational materials regarding gas turbine operation.

PREREQUISITES
  • Understanding of gas turbine mechanics
  • Familiarity with combustion processes in internal combustion engines
  • Knowledge of airflow dynamics in turbine systems
  • Basic principles of thermodynamics related to energy conversion
NEXT STEPS
  • Research the structure and function of gas turbine combustion chambers
  • Explore the differences between gas turbines and turbofan engines
  • Study the impact of bypass ratio on turbine efficiency
  • Review diagrams and explanations of gas turbine operation on reputable educational websites
USEFUL FOR

Physical science educators, engineering students, and professionals in aerospace engineering will benefit from this discussion, particularly those seeking clarity on gas turbine mechanics and combustion processes.

SpiffyPhysics
Messages
9
Reaction score
1
Hello

I am teaching physical science at an online school, and came across this issue in the textbook - I'm looking to double check with more knowledgeable people before I bring it up and potentially make a fool of myself.

In one chapter of the physical science text it discusses various engines. It includes this text about gas turbines:

THE GAS TURBINE

Another type of internal-combustion engine is called a gas turbine. The main parts of this engine are represented in Figure 26. Air is fed through the inlet pipe into a set of rotating blades in the compressor. The compressed air passes through the pipe to the oil-burning chamber. Fuel oil from the pump is furnished to the oil-burning chamber, where it’s mixed with some of the compressed air from the pipe. This mixture is then ignited and burned in the chamber. The rest of the compressed air is fed through an air passage to the combustion chamber. In the combustion chamber, the air mixes with the gaseous products of combustion and cools these gases to a suitable temperature for use in the turbine wheel.

The turbine wheel consists of a large number of blades mounted on a shaft. As shown, the turbine blades and the compressor blades are mounted on the same shaft. The gases, which are under high pressure in the combustion chamber, are allowed to expand and are forced to strike the blades of the turbine wheel at a high velocity. The impact of the gases against the blades causes the shaft to rotate. The rotation of the shaft drives a machine such as the generator, which is used for generating electricity. An electric motor must be provided to start the turbine.

Gas turbines are commonly used in aircraft. The most suitable fuels for gas turbines are aviation-grade gasoline and a proper blend of gasoline, kerosene, and fuel oil.

with this diagram:
https://drive.google.com/file/d/0Bzpz5UtYxWMbUUNzdWo4NS1MQ1MyM2lKOWM5SWhwYXEyZXkw/view?usp=sharing

The text and diagram and even a test question states that the combustion chamber is not for burning anything but is separate from the oil burner and is used for cooling combustion products to a suitable temperature. Is this correct? Diagrams from other sources show the combustion actually happening in the combustion chamber. Is my textbook wrong or just unclear?

Thank you for your help!
 
Engineering news on Phys.org
The statement regarding the combustion chamber is somewhat correct but definitely confusing and poorly presented.
In reality, the engine's combustion chamber consists of both an inner fuel burning core and a surrounding annular outer cooling air flow section that is separated from the combustion core chamber by a perforated sleeve.
During turbine operation a portion of the compressed air entering the combustion chamber directly enters the core burner section where it is mixed with the fuel and burned. Meanwhile, the remaining compressed air flows into the annular outer chamber surrounding the inner burner core of the chamber where, by way of the perforations in the wall separating the inner and outer regions of the combustion chamber, it then flows into the core chamber where it blends with and cools the combustion air; and then, the combined air flows out the back of the core combustion chamber onward to drive the turbine section of the engine.
I hope this clarifies what actually takes place in the combustion chamber segment of the turbine engine.
P.S. I realize this then a somewhat run-on description of what occurs but it is the best way I can describe what actually happens.
 
  • Like
Likes   Reactions: berkeman
Thank you very much!

Your description was very clear and helpful. I am not confident in editing or removing the test question on the basis of the text being unclear, and requesting a change to the text.
Much appreciated!
 
A somewhat simpler version of a gas turbine is a turbofan engine as used on "jet" airplanes. The extra compressed air that is not used to burn the fuel contributes to the output power, thereby enhancing fuel efficiency. There is a decent explanation and drawings on wikipedia. Compare their drawings with the one you referenced.

https://en.wikipedia.org/wiki/Bypass_ratio
 

Similar threads

Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
13
Views
6K