Is this very simple derivative, derived correctly?

  • Thread starter Thread starter JayDub
  • Start date Start date
  • Tags Tags
    Derivative
JayDub
Messages
30
Reaction score
0
if y = 2x^2.9 - 3x^3.4 + 19

the derivative?
y' = 2(2.9)x ^ 1.9 -3(3.4)x^2.4 + 0
y' = 5.8x^1.9 - 10.2x^2.4
 
Physics news on Phys.org
Yes that's correct
 
and then the y'' of that would be...

y'' = 11.02x^0.9 - 24.48x^1.4?
 
Yes, that's right
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top