Jumping up on a rotating Earth

  • Thread starter Thread starter Guywithquestions
  • Start date Start date
  • Tags Tags
    Earth Rotating
AI Thread Summary
When a man jumps vertically at the equator, his linear momentum in the horizontal axis remains constant despite the increase in radius from the center of the Earth. Angular momentum is conserved, meaning that while the radius increases, the angular velocity decreases to maintain the overall momentum balance. The confusion arises from the relationship between linear and angular momentum, specifically that angular momentum depends on the perpendicular component of linear momentum relative to the radius. The cross product nature of angular momentum ensures that even with changes in radius, the total angular momentum remains constant. Thus, both angular and linear momentum can be conserved simultaneously in this scenario.
Guywithquestions
Messages
3
Reaction score
0
Hello,

I know it suppose to be a relatively basic question but still somehow I can't fully understand it.
Let assume that a man jumps vertically on the equator, while the Earth is of course rotating. What will happen to the value of his linear momentum in the horizontal axis?
It seems to me that if the angular momentum must be conserved, than the linear momentum must decrease, because:
J = p x r
And since r is increased due to the jump
p must decrease
Is it correct? If so how is it possible since both angular momentum and linear momentum must be conserved?

Thank you kindly.
 
Physics news on Phys.org
The angular and linear momentum of the system (earth+man) will be conserved (because there are by assumption ~no external forces or torques on the system). The man, depending upon how he jumps, can change momentum for himself (and exactly equally and oppositely for the earth).
 
  • Like
Likes Delta2
Guywithquestions said:
Summary: If a man jumps off the equator, What will happen to the value of his linear momentum in the horizontal axis?

Hello,

I know it suppose to be a relatively basic question but still somehow I can't fully understand it.
Let assume that a man jumps vertically on the equator, while the Earth is of course rotating. What will happen to the value of his linear momentum in the horizontal axis?
It seems to me that if the angular momentum must be conserved, than the linear momentum must decrease, because:
J = p x r
And since r is increased due to the jump
p must decrease
Is it correct? If so how is it possible since both angular momentum and linear momentum must be conserved?

Thank you kindly.
His linear momentum remains constant. So while the radius for calculating angular momentum increases his angular velocity with respect to the center of rotation must decrease.

Below is a quick vector diagram of the situation:
The green arrow is his Vertical jump speed
Blue arrow is his tangential velocity due to the rotation of the Earth
Red arrows are his resultant velocity broken into two sections of equal time.
Cyan lines represent the angles swept out by the radial line.
Note that for the first time section of his trajectory the cyan line has swept through a larger angle than it does during the second time section of equal length. The cyan line grows in length but rotates slower as time goes on.
Momentum.png
 
  • Like
Likes lekh2003 and hutchphd
Thank you for answering!
My problem rised from the equation j=p x r
And since r is increased and p (linear momentum) stays constant it seems as though j (angular momentum) must increase as well (contrary to staying constant).
If I understand correctly from your drawing it can be seen that the angle between the radius and the velocity vector increases and therefore the cross product stays the same over time.
 
Guywithquestions said:
And since r is increased and p (linear momentum) stays constant it seems as though j (angular momentum) must increase as well (contrary to staying constant).
Remember that angular momentum is not just the product of the magnitudes of r and p. It is the vector cross product. One way to understand the cross product is that it is not p that counts. It is only the component of p that is at right angles to r.
 
Thread 'Is 'Velocity of Transport' a Recognized Term in English Mechanics Literature?'
Here are two fragments from Banach's monograph in Mechanics I have never seen the term <<velocity of transport>> in English texts. Actually I have never seen this term being named somehow in English. This term has a name in Russian books. I looked through the original Banach's text in Polish and there is a Polish name for this term. It is a little bit surprising that the Polish name differs from the Russian one and also differs from this English translation. My question is: Is there...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
Back
Top