mullzer
- 10
- 0
Homework Statement
Let a and b be two given orthonormal vectors around a fixed point O. The motion of a continuum is defined by the following velocity field:
v(M) = \alpha \vec{a} (\vec{b} . \vec{OM}) \\ [\tex]<br /> <br /> where \alpha [\tex] is a known positive constant.<br /> <br /> 1. Choosing a marker, determine the lagrangian representation of motion, given that at time t= 0, the particle occupies the position X= ([X][/1], [X][/2], [X][/3]).<br /> <br /> Determine the trajectories, streamlines and streaklines of the motion. Calculate the acceleration field.<br /> <br /> 2. Determine the composants of the deformation gradient tensor <b>F</b>, the expansion tensor <b>C</b>, the derformation tensor <b>X</b>, the strain rate tensor <b>D</b> and the tensors <b>G </b>= <b>[F][/-1]</b> and <b>B</b> = [<b>G][/T] G</b><br /> <br /> Calculate the eigenvalues and principle directions of <b>C, X</b> and <b>B</b>. What would happen to these if the value of \alpha t [\tex] was small? Interperate the case.&lt;br /&gt; &lt;br /&gt; &lt;br /&gt; &lt;br /&gt; &lt;h2&gt;Homework Equations&lt;/h2&gt;&lt;br /&gt; The Lagrangian stament of motion: \vec {x_{i}} (t) = \vec{\phi_{i}} (\vec {X}, i = 1, 2, 3\\&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; and \vec{v} (\vec {u}, t) = \frac{d \vec{x}}{dt} \\[\tex]&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; &amp;lt;h2&amp;gt;The Attempt at a Solution&amp;lt;/h2&amp;gt;&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; First of all, is it alright to substitute \vec{a} [\tex] and \vec{b} [\tex] with basis vectors \vec{e_4{1}} [\tex] and \vec{e_{2}} [\tex] which would correspond with \vec{x_{i}} [\tex] ?&amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;gt; &amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;gt; 1. use the second relevant eq:&amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;gt; &amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;gt; \vec{v} (\vec {u}, t) = \frac{d \vec{x}}{dt} \\[\tex]&amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;gt; with respect to x_{1}, x_{2} and x_{3}. According to some notes i have jotted down, this yields:&amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;gt; \frac{d \vec{x_{1}}}{dt} = \alpha x_{1} \\&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt; \frac{d \vec{x_{2}}}{dt} = -\alpha x_{2} \\&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt; \frac{d \vec{x_{3}}}{dt} = 0 \\ [\tex]&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt; which is the main source of my confusion. How come it is different for each of these? Is it do with the wedge product of a and b?&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt; After that I rearrange these eq&amp;amp;amp;amp;amp;amp;amp;amp;#039;s and solve for x_{i} \ [\tex] using the intial condition of X= ([x=[X][/1], [X][/2], [X][/3]) at t = 0:&amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;gt; x_{1} = C_{1}e^(\alphat) \ [\tex] etc; where C_{1} \ [\tex]becomes X_{1}\\ [\tex]&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; I believe that these eq&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#039;s are also the trajectories of the motion. &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; Deriving these further with respect to t gives the lagrangian speed and then the lagrangian acceleration:&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; \Gamma_{1} = \alpha^2 X_{1}e^(\alphat) \ [\tex] etc.&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; 2. To obtain &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;F&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;, I derived the eq. of motion x_{1} = C_{1}e^(\alphat) \ [\tex] with respect to x_{1}, x_{2} and x_{3} [\tex] and then the other eq&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;#039;s of motion with respect to x_{1}, x_{2} and x_{3} [\tex]. These nine values were used to create a diagonal tensor with trace e^(\alpha t) + e^(-\alpha t) + 1. \\ [\tex]&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;C&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; is then equal to [&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;F&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;][/T]&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;F&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;X&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; = \frac {1}{2} (C-I). \\ &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; I know how to get eigenvaues by solving &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;C&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; - \lambda[\tex]&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;I&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;.&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; Mainly, I would just like an explanation of how the original equation came about (providing the rest of what I have done is correct). If you could explain it as simply as possible as I am now to this field of mechanics. Thanks in advance!