MHB Kronecker's Theorem - Anderson and Feil, Theorem 42.1, Chapter 42 .... ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Theorem
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Anderson and Feil - A First Course in Abstract Algebra.

I am currently focused on Ch. 42: Field Extensions and Kronecker's Theorem ...

I need some help with an aspect of the proof of Theorem 42.1 ( Kronecker's Theorem) ...

Theorem 42.1 and its proof read as follows:
https://www.physicsforums.com/attachments/6565
https://www.physicsforums.com/attachments/6566In the above text by Anderson and Feil we read the following:

" ... ... We show that there is an isomorphism from $$F$$ into $$F[x] / <p>$$ by considering the function $$\psi \ : \ F \longrightarrow F[x] / <p>$$ defined by $$\psi (a) = <p> + a$$, where $$a \in F$$. ... ... "The authors show that $$\psi$$ is one-to-one or injective but do not show that $$\psi$$ is onto or surjective ...

My question is ... how do we know that $$\psi$$ is surjective ...

... for example if a polynomial in $$F[x]$$, say $$f$$, is degree 5, and $$p$$ is degree 3 then dividing $$f$$ by $$p$$ gives a polynomial remainder $$r$$ of degree 2 ... then $$r + <p>$$ will not be of the form $$<p> + a$$ where $$a \in F$$ ... ... and so it seems that $$\psi$$ is not surjective ... since the coset of $$f$$ is not of the form $$<p> + a$$ where $$a \in F$$ ...

... ?Obviously my thinking is somehow mistaken ...... can anyone help by demonstrating that $$\psi$$ is surjective ... and hence (given that Anderson and Feil have demonstrated it is injective) an isomorphism ...Help will be appreciated ...

Peter
 
Last edited:
Physics news on Phys.org
Peter said:
I am reading Anderson and Feil - A First Course in Abstract Algebra.

I am currently focused on Ch. 42: Field Extensions and Kronecker's Theorem ...

I need some help with an aspect of the proof of Theorem 42.1 ( Kronecker's Theorem) ...

Theorem 42.1 and its proof read as follows:

In the above text by Anderson and Feil we read the following:

" ... ... We show that there is an isomorphism from $$F$$ into $$F[x] / <p>$$ by considering the function $$\psi \ : \ F \longrightarrow F[x] / <p>$$ defined by $$\psi (a) = <p> + a$$, where $$a \in F$$. ... ... "The authors show that $$\psi$$ is one-to-one or injective but do not show that $$\psi$$ is onto or surjective ...

My question is ... how do we know that $$\psi$$ is surjective ...

... for example if a polynomial in $$F[x]$$, say $$f$$, is degree 5, and $$p$$ is degree 3 then dividing $$f$$ by $$p$$ gives a polynomial remainder $$r$$ of degree 2 ... then $$r + <p>$$ will not be of the form $$<p> + a$$ where $$a \in F$$ ... ... and so it seems that $$\psi$$ is not surjective ... since the coset of $$f$$ is not of the form $$<p> + a$$ where $$a \in F$$ ...

... ?Obviously my thinking is somehow mistaken ...... can anyone help by demonstrating that $$\psi$$ is surjective ... and hence (given that Anderson and Feil have demonstrated it is injective) an isomorphism ...Help will be appreciated ...

Peter

I probably should not be answering my own question ... but I am now of the opinion that $$\psi$$ is not an isomorphism ... but is an embedding of $$F$$ in $$F[x] / <p>$$ ... I did not read the theorem/proof carefully enough ... :(

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top