Lagrange Multipliers Find 3 positive numbers?

tak13
Messages
8
Reaction score
0

Homework Statement



Find 3 positive numbers x, y and z for which: their sum is 24 and which maximizes the product: P = x2y3z. Find the maximum product.



The Attempt at a Solution



Ok, I know how to set up the equations.

x + y + z = 24

Delta(F) <2xy3z, 2x2y2z, x2y3>

fx = 2xy3z = λ
fy = 2x2y2z = λ
fz = x2y3> = λ

Substitution part is where I am stuck. Any helps would be awesome! Thanks!
 
Physics news on Phys.org
Nevermind, after a major number crunching, I got it. thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top