Lagrangian mechanics: central-force-like problem

LuccaP4
Messages
24
Reaction score
9
Homework Statement
Under the action of gravity, a particle of mass m slides on a conical surface without friction.
The conical surface has the form: ρ=z tan⁡α

a. Find the motion equations using as coordinates θ and r (see picture).
b. Find r_max and r_min if α=30° and initial conditions are:
r(0)=a ; r ̇(0)=0 ; θ ̇^2 (0)=4√3 g/a
c. Find the effective potential and show that circular orbits are possible. Find the particle’s speed in circular orbits.
d. Assuming the particle in circular motion, find the oscillator constant and the period of oscillation for small perturbations of this motion.
Relevant Equations
Lagrange equations
I copy again the statement here:
Statement.png


So, I think I solved parts a to c but I don't get part d. I couldn't even start it because I don't understand how to set the problem.
I think it refers to some kind of motion like this one in the picture, so I'll have a maximum and a minimum r, and I can get the energy and initial speed of a circular motion from part c, but I don't know how to use them.
d.png


I attach my resolution on the other parts.
a.png

b1.png

b2.png

c1.png

c2.png
 

Attachments

  • b2.png
    b2.png
    2.2 KB · Views: 275
  • Like
Likes JD_PM and Delta2
Physics news on Phys.org
You can use ##V_{\rm eff}''(r_0)## to find the "oscillator constant" ##k## and the period of oscillation for small perturbations of the circular motion. See this and also page 2 of this example.
 
  • Like
Likes LuccaP4, JD_PM and Delta2
Many thanks!
 
Is this valid in every case?
dc182d7dc4c73be5b52da8a2283cc4ac.png


In the frecuency ##\omega##, I should evaluate the second derivative in ##r_0##, shouldn't I?
 
LuccaP4 said:
Is this valid in every case?
View attachment 263728

In the frecuency ##\omega##, I should evaluate the second derivative in ##r_0##, shouldn't I?
The frequency of small oscillations does not equal the orbital frequency, in general. The example in the link is an interesting exception where they are equal.

Yes, you need to find ##\frac{d^2 V_{\rm eff}(r)}{dr^2} |_{r = r_0}##.

For part (c), I would express ##\dot \theta## in terms of ##r_0##, rather than ##L##. You are also asked to "find the speed". I think this is probably the linear speed of the particle.

For part (d), I would express the "oscillation constant" and the period of the oscillations in terms of the unperturbed radius ##r_0##, rather than in terms of the angular momentum ##L##.
 
Okay, thanks!
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top