Deriving Kinetic Energy in a Double Pendulum System

AI Thread Summary
The discussion centers on deriving the kinetic energy of a double pendulum system using Lagrangian mechanics, specifically without a gravitational field. The user outlines the setup of two pendulums, detailing their Cartesian coordinates and expressing confusion about computing time derivatives of these coordinates to find kinetic energy. The key to solving the problem lies in recognizing that the angles θ and α are functions of time, allowing the application of the chain rule for derivatives. By applying the chain rule, the user successfully derives the kinetic energy equations for both pendulums, confirming the anticipated results. The conversation emphasizes the importance of understanding the relationship between angular motion and Cartesian coordinates in dynamic systems.
Andreas C
Messages
196
Reaction score
20
Ok, I'm reading up on Lagrangian mechanics, and there is a problem that I don't really understand: the double pendulum (in this case, without a gravitational field). So, I want to take it step by step to make sure I understand all of it.

We've got a pendulum (1) with a weight mass m=1kg attached to a rod of length r=1m making an angle of θ with the vertical, and another identical pendulum (2) attached on the weight of pendulum (1), making an angle α with it. Transforming these coordinates to Cartesian ones, we get x(1)=sinθ, y(1)=cosθ and x(2)=sinθ+sin(α+θ) and y(2) = cosθ+cos(α+θ).

Ok. So far so good. Now I am supposed to compute the time derivatives of the Cartesian velocity components in terms of the angles to compute the kinetic energy. How exactly am I supposed to do that? Since there is no t in these, I can't directly find their time derivatives, unless I use the equations that describe the motions of pendulums that are already known, but aren't these wrong in the case of a double pendulum?

I know that the results I am supposed to get for the kinetic energies are these:

T1=(dθdt)^2/2

T2=((dθdt)^2+(dθdt+dαdt)^2)/2+(dθdt)*(dθdt+dαdt)*cosα

I just have no idea how to get them.
 
Physics news on Phys.org
Andreas C said:
Since there is no t in these
actually there is ##\alpha=\alpha(t),\quad \theta=\theta(t)##
Andreas C said:
with a weight mass m=1kg
this is not a good manner: you deprive yourself from opportunity of using the dimensions of physics quantities to check your formulas
 
Last edited:
wrobel said:
actually there is α=α(t),θ=θ(t)

What I meant was that it's not explicitly shown. Of course there is, but I don't know what the value of the function α(t) is.

wrobel said:
this is not a good manner: you deprive yourself from opportunity of using the dimensions of physics quantities to check your formulas

Well, I'm not the one who made the problem :)
 
Anyway, the question still stands, I still can't figure out what to do here.
 
Ok, I found the answer, here it is for anyone who might be interested:

Using the chain rule, we write say dx1/dt=sinθ as dθ/dt ⋅ d(sinθ)/dθ = dθ/dt ⋅ cosθ. If we plug this (and y1) into the equation for kinetic energy in this case (which is T1=(x^2+y^2)/2), and do some algebra, we eventually get the anticipated solution of T1=(dθ/dt)^2/2. It's the same thing for T2, only a bit more complicated. The point is that you're meant to apply the chain rule for derivatives.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...

Similar threads

Back
Top