catcherintherye
- 47
- 0
The function u(r,\theta)
satisfies Laplace's equation in the wedge 0 \leq r \leq a, 0 \leq \theta \leq \beta
with boundary conditions u(r,0) = u(r,\beta) =0, u_r(a,\theta)=h(\theta). Show that
u(r,\theta) = \sum_{n=0}^\infty A_nr^{n\pi/\beta}sin(\frac{n\pi\theta}{\beta})
A_n=a^{1-\frac{n\pi}{\beta}\frac{2}{n\pi}\int_{0}^{\beta}h(\theta)sin\frac{n\pi\theta}{\beta}d\theta
satisfies Laplace's equation in the wedge 0 \leq r \leq a, 0 \leq \theta \leq \beta
with boundary conditions u(r,0) = u(r,\beta) =0, u_r(a,\theta)=h(\theta). Show that
u(r,\theta) = \sum_{n=0}^\infty A_nr^{n\pi/\beta}sin(\frac{n\pi\theta}{\beta})
A_n=a^{1-\frac{n\pi}{\beta}\frac{2}{n\pi}\int_{0}^{\beta}h(\theta)sin\frac{n\pi\theta}{\beta}d\theta
Last edited: