squaremeplz
- 114
- 0
Homework Statement
describe the laurent series for the function
f(z) = z^3 cos(\frac {1}{z^2})
b) use your answer to part a to compute the contour integral
\int z^3 cos(\frac {1}{z^2}) dz
where C is the unit counter-clockwise circle around the origin.
Homework Equations
The Attempt at a Solution
a)
f(z) = z^3 * \sum_{n=0}^\infty \frac {(-1)^n}{(2n)!} * ( \frac {1}{z^2} )^2^n
f(z) = \sum_{n=0}^\infty \frac {(-1)^n}{(2n)!} * \frac {1}{z^n}
b) so would I just evaluate
\sum_{n=0}^1 \frac {(-1)^n}{(2n)!} * \frac {1}{z^n}
Last edited: