How to Evaluate a Limit at Infinity with Exponential Functions

Ionophore
Messages
17
Reaction score
0
Can someone give me a hint on how to evaluate the following limit?

<br /> \stackrel{lim}{T\rightarrow\infty} (Texp(c/T) - T)<br />

I tried multiplying the numerator and denominator by the conjugate (because that sometimes helps) and got:

<br /> (T^2exp(2c/T) - T^2) / (Texp(c/T) + T)<br />

But I'm not sure what I can do from there...
 
Physics news on Phys.org
You can express it as

\lim_{x\rightarrow\infty} \frac{e^{c/x} - 1}{x^{-1}}}

Then apply l'hopital's rule
 
Even faster, just observe that c/T -> 0 as T-> inf and use Maclaurin's for e^(c/T) up to the first order term.
 
Here's a typesetting tip:

\lim_{x \to a}

results in

\lim_{x \to a}

Furthermore, if you wanted to create your own custom one, you would do this:

\mathop{\mathrm{Hur}}_{a = 1}^{b = 7}

to get

\mathop{\mathrm{Hur}}_{a = 1}^{b = 7}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top