Okay, so
A= \begin{bmatrix}1 & 0 \\ 0 & -1\end{bmatrix}
Saying that B= \begin{bmatrix}b_{11} & b_{12} \\ b_{21} & b_{22}\end{bmatrix} commutes with A means
AB= \begin{bmatrix}1 & 0 \\ 0 & -1\end{bmatrix}\begin{bmatrix}b_{11} & b_{12} \\ b_{21} & b_{22}\end{bmatrix}= \begin{bmatrix}b_{11} & b_{12} \\ b_{21} & b_{22}\end{bmatrix}\begin{bmatrix}1 & 0 \\ 0 & -1\end{bmatrix}= BA
\begin{bmatrix}b_{11} & b_{12} \\ -b_{21} & -b_{22}\end{bmatrix}= \begin{bmatrix}b_{11} & -b_{12} \\ b_{21} & -b_{22}\end{bmatrix}
So the conditions are that b_{12}= -b_{12} which gives b_{12}= 0 and -b_{21}= b_{21} so b_{21}= 0.
Your first statement is correct- this is the set of diagonal matrices.
With A= \begin{bmatrix} 1 & 1 \\ 0 & 1\end{bmatrix}
we have
AB= \begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix}\begin{bmatrix}b_{11} & b_{12} \\ b_{21} & b_{22}\end{bmatrix}= \begin{bmatrix}b_{11} & b_{12} \\ b_{21} & b_{22}\end{bmatrix}\begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix}= BA
\begin{bmatrix}b_{11}+ b_{21} & b_{12}+ b_{22} \\ b_{21} & b_{22}\end{bmatrix}= \begin{bmatrix}b_{11} & b_{11}+ b_{12} \\ b_{21} & b_{21}+ b_{22}\end{bmatrix}
So we must have b_{11}+ b_{21}= b_{11}, which means b_{21}= 0, b_{12}+ b_{22}= b_{11}+ b_{12}, which means b_{11}= b_{22}, and b_{22}= b_{21}+ b_{22}, which means b_{21}= 0.
That's exactly what you have! Very good!