Linear Algebra - How to get matrix form Ax.

theBEAST
Messages
361
Reaction score
0

Homework Statement


I know the title is misleading but what I am asking is how I can get this matrix
x1cosθ-x2sinθ
x1sinθ+x2cosθ

to the matrix multiplication form
cosθ -sinθ | x1
sinθ cosθ | x2


where
A=
cosθ -sinθ
sinθ cosθ
x=
x1
x2


Is there a good method to do this or do I have to find it by eye-balling it?
 
Physics news on Phys.org
have you tried perfoming the matrix multiplication:

\begin{bmatrix}\cos\theta&-\sin\theta\\ \sin\theta&\cos\theta\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix} = ?

and comparing that to what you want?
 
What's the usual way of finding the columns of the matrix representing a linear transformation? It should be mentioned in your book somewhere.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top