VinnyCee
- 486
- 0
Homework Statement
http://img216.imageshack.us/img216/302/problem8310en9.jpg
By applying Kirchoff's laws to the circuit above, we obtain the following equations:
i_1\,-\,i_2\,-\,i_3\,=\,0
i_1\,-\,i_2\,-\,i_3\,=\,0
R_2\,i_2\,-\,R_3\,i_3\,=\,0
R_1\,i_1\,-\,R_2\,i_2\,=\,E
R_1\,i_1\,-\,R_3\,i_3\,=\,E
Obtain the solution set of equations by Gauss elimination. If there is no solution, or if there is a non-unique solution, explain that result in physical terms.
R_1\,=\,R_2\,=\,R_3\,\equiv\,R
Homework Equations
Linear algebra, matrices, etc.
The Attempt at a Solution
First, I put the four non-identical equations into a matrix.
\left(\begin{array}{cccc}1&-1&-1&0\\0&R&-R&0\\R&R&0&E\\R&0&R&E\end{array}\right)
Now I reduce it down to R.R.E.F. using elementary row operations. (Note that one of the equations is redundant)
\left(\begin{array}{cccc}1&0&0&\frac{2E}{3R}\\0&1&0&\frac{E}{3R}\\0&0&1&\frac{E}{3R}\end{array}\right)
So then, i_1\,=\,\frac{2E}{3R} and i_2\,=\,i_3\,=\,\frac{E}{3R}?
Last edited by a moderator: