Linear Algebra true/false explanation.

A_lilah
Messages
52
Reaction score
0
Linear Algebra true/false explanation. :)

Homework Statement



True or False:
Is it possible to find a pair of two-dimensional subspaces S and T of R3 such that S (upside down U) = {0} ?

Homework Equations





The Attempt at a Solution



My understanding: upside down U = intersection, and for S to intersect T, S must have some vectors that are linear combinations of the vectors of T (and vice versa). These combinations have to = 0... and that's all I've got. I've sifted through my notes and the textbook several times, and the only other thing I could come up with that may or may not be useful (I haven't connected the dots yet), is that:
Def: the vectors v1, v2,...,vn in a vector space V are said to be linearly independent if
c1v1+c2v2+...+cnvn = 0
which implies that all the scalars c1...cn must equal zero

(the answer in the back of the book says that the answer is false, which is why I was looking at linear independence.)
Thanks!
 
Physics news on Phys.org


Think about the geometry of your problem. S and T are both two-dimensional subspaces of R^3, which means that both (S and T) are planes that contain the origin. Is it possible to have two planes in R^3, both containing the origin, that intersect at no other points?
 


No. So does = {0} mean they only contain the origin then?
 


Yes, {x} means a set that contains only the single member x. Surely you knew that?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top