Linear momentum translational problem

Benzoate
Messages
418
Reaction score
0

Homework Statement



A number of particles with masses m(1), m(2) , m(3),... are situated at the points with positions vectors r(1),r(2), r(3),... relative to an origin O. The center of mass G of the particles is defined to be the point of space with position vector

R=m(1)r(1)+m(2)r(2)+m(3)r(3)/(m(1)+m(2)+m(3))

Show that if a different Origin O' were used , this definition would still place G at the same point of space

Homework Equations


R=m(1)r(1)+m(2)r(2)+m(3)r(3)/(m(1)+m(2)+m(3))

Possibly C+R=R'


The Attempt at a Solution



I think I need to translate R to a new coordinate system , which is O', and essentially show that If a vectors moves into a new coordinate system , calling constant c the distance between the new coordinate system and the old coordinate system, I have to show the magnitude of the vectors don't changed. So here it goes:

R'=(m1)*(r1+c)+(m2)(r2+c)+(m3)(r3+c)/(m1+m2+m3)=m1r1+mc+m2r2+mc+m3r3+mc/(m1+m2+m3)
C=R'-R=c(m1+m2+m3)/(m1+m2+m3)=c; Therefore, R=R'-C. Is that the procedure I would apply to proved That the magnitude of the vectors do not change at all as I move my position vectors into a new coordinate system?
 
Physics news on Phys.org
I think, if I'm reading what you have written correctly, that you have shown that if you translate all of the ri vectors by c then the center of mass moves by c? If so then doesn't that show that the center of mass is translation independent?
 
Dick said:
I think, if I'm reading what you have written correctly, that you have shown that if you translate all of the ri vectors by c then the center of mass moves by c? If so then doesn't that show that the center of mass is translation independent?

I am trying to show that the magnitude of the position vectors will not change if I move my positions vectors to a new coordinate system. Isn't that what translation independence is?
 
Benzoate said:
I am trying to show that the magnitude of the position vectors will not change if I move my positions vectors to a new coordinate system. Isn't that what translation independence is?

Hi Benzoate! :smile:

Why do you keep going on about magnitude?

Magnitude has nothing to do with it.

As Dick says:
Dick said:
I think, if I'm reading what you have written correctly, that you have shown that if you translate all of the ri vectors by c then the center of mass moves by c? If so then doesn't that show that the center of mass is translation independent?

You have proved (very messily, and only for n = 3 … can't you use ∑ notation?) that if R is the average of R1 R2 … Rn then R+C is the average of R1+C R2+C … Rn+C.

In other words: "this definition would still place G at the same point of space". :smile:
 
The magnitude of the position vectors does change when you move the origin's location.

|ri + c| is not |ri|

But that is irrelevant to solving this problem.

Moving the origin is equivalent to adding a constant vector c to each position vector. By showing that the center of mass R becomes R + c, you prove that the CM is in the same location after the origin shift. Just as Dick said:

Dick said:
... if you translate all of the ri vectors by c then the center of mass moves by c ...

Edit --
Note to self: I owe tiny-tim a beer :smile:
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top