Why do the order of Lorentz transformations matter?

ehrenfest
Messages
2,001
Reaction score
1
lets say you apply a Lorentz boost in the x direction with velocity v and a Lorentz boost in the y direction with velocity v'. Why does it makes that the order in which you apply the transformations affects the resultant transformation matrix? These are two independent directions, so shouldn't you be free to apply the transformations in whatever order you want. Interestingly, I get the transpose matrix when I reverse the order of application. Why does that make sense? In the Galilean system, the order does not matter, right?
 
Physics news on Phys.org
Well, the set of all Lorentz boosts don't even make up a group, not to mention a commutative group. Or think about it this way: do matrices generally commute under multiplication ?

Spacetime translations form a commutative group. Space rotations don't form a commutative group, but they form a group.
 
dextercioby said:
Well, the set of all Lorentz boosts don't even make up a group, not to mention a commutative group. Or think about it this way: do matrices generally commute under multiplication ?

Spacetime translations form a commutative group. Space rotations don't form a commutative group, but they form a group.

What is an example of two space rotations that are not commutative? They do form a group in two dimensions, correct?
 
By space rotations i meant just that, "space" rotations, i.e. the SO(3) group. The plane rotations, or SO(2), form an abelian group, since one can show that SO(2)\simeq U(1), with the latter group being abelian.
 
Last edited:
I see. Thanks.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top