Defining ## a \left[ k \right] = {2}^{- \left| k \right|} ##.
Moreover, the Auto Correlation function of ## v ## defined as ## {r}_{vv} \left[ k \right] = \left \langle {v}^{\left( 0 \right)}, {v}^{\left( k \right)} \right \rangle = \sum_{n = -\infty}^{\infty} {v}_{n} {v}_{n - k} ##.
Pay attention that [Auto Correlation][1] is [Hermitian Function][2].
Using the definition of [Convolution][3] one could write:
$$ \left( {r}_{vv} \ast a \right) \left[ 0 \right] = \sum_{k = -\infty}^{\infty} {2}^{- \left| k \right| } \left \langle {v}^{\left( 0 \right)}, {v}^{\left( k \right)} \right \rangle $$
Using the [Convolution Theorem][4] one could write that:
$$ \left( {r}_{vv} \ast a \right) \left[ 0 \right] = \int_{- \pi}^{\pi} {R}_{vv} \left( \omega \right) A \left( \omega \right) d \omega $$
Where ## R \left( \omega \right) ## and ## {R}_{vv} \left( \omega \right) ## are the DTFT of ## {r}_{vv} \left[ k \right] ## and ## a \left[ k \right] ## respectively.
One should notice the DTFT of ## a \left[ k \right] ## is defined only one sided. Yet since its symmetrical it can well calculated:
$$
\begin{align*}
A \left( \omega \right) & = DTFT \left\{ a \left[ k \right] \right\} = \sum_{k = -\infty}^{\infty} a \left[ k \right] {e}^{-j \omega k} = \sum_{k = 0}^{\infty} {2}^{-k} {e}^{-j \omega k} + \sum_{k = 0}^{\infty} {2}^{-k} {e}^{j \omega k} - 1 \\
& = \frac{1}{1 - 0.5 {e}^{-j \omega}} + \frac{1}{1 - 0.5 {e}^{j \omega}} - 1 = \frac{1 - {c}^{2}}{1 - 2 c \cos \left( \omega \right) + {c}^{2}} = \alpha > 0 \quad \forall c < 1
\end{align*}
$$
In the above ## c = {2}^{-1} = 0.5 ## yet actually this will hold for any ## c < 1 ##.
So the integral is given by:
$$
\begin{align*}
\int_{- \pi}^{\pi} {R}_{vv} \left( \omega \right) A \left( \omega \right) d \omega & = \int_{- \pi}^{\pi} {R}_{vv} \left( \omega \right) \frac{1 - {c}^{2}}{1 - 2 \alpha \cos \left( \omega \right) + {c}^{2}} d \omega \\
& \geq \alpha \int_{- \pi}^{\pi} {R}_{vv} \left( \omega \right) d \omega = \alpha {\left\| v \right\|}^{2}
\end{align*}
$$
As requested.
By the way the result must be real since ## a \left[ k \right] ## is symmetric and ## {r}_{vv} ## is hermitian function and hence its transform is real.
[1]:
https://en.wikipedia.org/wiki/Autocorrelation
[2]:
https://en.wikipedia.org/wiki/Hermitian_function
[3]:
https://en.wikipedia.org/wiki/Convolution
[4]:
https://en.wikipedia.org/wiki/Convolution_theorem