Magnetization of the core of a long solenoid

AI Thread Summary
A long solenoid with 60 turns/cm and a current of 0.15 A wraps around a steel core with a relative permeability of 5200. The magnetization of the core can be calculated using the relationship M = χH, where χ is the magnetic susceptibility and H is the magnetic field strength. The calculated magnetization values differ, with one approach yielding M = 5.88 A/m and the textbook providing M = 4.68 MA/m. The discrepancy arises from the treatment of magnetic fields, particularly the distinction between B-fields and H-fields. Clarification on the correct application of Ampere's Law and the definitions of the fields is necessary to resolve the differences in results.
prodo123
Messages
17
Reaction score
4

Homework Statement


A long solenoid of 60 turns/cm carries a current of 0.15 A. It wraps a steel core with relative permeability ##\mu_r=5200##. Find the magnitude of the magnetization of the core.

Homework Equations


##N=\lambda L##
##\chi = \mu_r-1##
##\mu = \mu_r\mu_0##
##\vec{M}=\chi\vec{H}##
where ##\vec{H}## is the external magnetic field applied to the core and ##\vec{M}## is the magnetization of the core. This equation never showed up on the textbook for some reason.
##\vec{B_m}=\mu_0\vec{M}##
where ##\vec{B_m}## is the additional magnetic field in the core induced by the external field ##\vec{H}##.Constants for the problem:
##\lambda=6000## (60 turns/cm = 6000 turns/m)
##I=0.15##

The Attempt at a Solution


The magnetic field induced by the solenoid is the external magnetic field ##\vec{H}## applied to the core.
Ampere's Law finds the induced magnetic field of the solenoid along the center axis as:
##\int \vec{H}\cdot d\vec{l} = \mu_0 N I##
##HL=\mu_0 \lambda L I##
##H=\mu_0 \lambda I##
##H = 1.13 \text{ mT}##

##\chi=\mu_r-1=\frac{M}{H}##
##M = H(\mu_r-1)##
##M = 5.88\text{ A/m}##

The textbook has a completely different answer:
##M = \mu_r \lambda I##
##M = 4.68\text{ MA/m}##

which I assume took the following steps:
##H=\mu_0 \lambda I##
##B_m=\mu\lambda I = \mu_0 M##
##M = \frac{\mu}{\mu_0}\lambda I##
##M = \mu_r \lambda I##

Which is the right approach and why?
 
Physics news on Phys.org
prodo123 said:
Ampere's Law finds the induced magnetic field of the solenoid along the center axis as:
##\int \vec{H}\cdot d\vec{l} = \mu_0 N I##
Hello. There should not be a factor of ##\mu_0## on the right side of the above equation.

Also, note ##M = H(\mu_r - 1) \approx H \mu_r##.
 
TSny said:
Hello. There should not be a factor of ##\mu_0## on the right side of the above equation.
Sorry for the confusion, all the fields are B-fields, let me revise...maybe that's the issue?

##\int \vec{B}\cdot d\vec{l}=\mu_0 N I##
##BL=\mu_0 \lambda L I##
##B=\mu_0 L I##
##B=1.13\text {mT}##
 
TSny said:
Hello. There should not be a factor of ##\mu_0## on the right side of the above equation.

Also, note ##M = H(\mu_r - 1) \approx H \mu_r##.
The textbook doesn't discuss at all H-fields, so if I read what's online correctly,
Para- and diamagnetism have B- and H-fields proportional such that ##\vec{B} = \mu \vec{H}##. The external field ##\vec{B}## is therefore equal to ##\mu_0 \vec{H}##.
##M=\chi H = \chi\frac{B}{\mu_0}##
##M = (\mu_r-1)\frac{B}{\mu_0}\approx\mu_r\frac{B}{\mu_0}##
##M=4.68\text{ MA/m}##
 
prodo123 said:
The textbook doesn't discuss at all H-fields, so if I read what's online correctly,
Para- and diamagnetism have B- and H-fields proportional such that ##\vec{B} = \mu \vec{H}##. The external field ##\vec{B}## is therefore equal to ##\mu_0 \vec{H}##.
OK. By "external field" you mean just the part of ##\vec{B}## that is due to the current in the winding of the solenoid.
##M=\chi H = \chi\frac{B}{\mu_0}##
##M = (\mu_r-1)\frac{B}{\mu_0}\approx\mu_r\frac{B}{\mu_0}##
##M=4.68\text{ MA/m}##
OK. In the first two lines here, ##\vec{B}## is the "external" field.
 
TSny said:
OK. By "external field" you mean just the part of ##\vec{B}## that is due to the current in the winding of the solenoid.
OK. In the above three lines, ##\vec{B}## is the "external" field.
Yes, the external field ##\vec{B}## in the equations is the B-field due to the current in the coils only.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top