Master the Bonus Physics Problem with Integration | 1000 kg Boat Case Study

  • Thread starter Thread starter Tony Zalles
  • Start date Start date
  • Tags Tags
    Physics
AI Thread Summary
The discussion centers around a challenging bonus physics problem involving a 1000 kg boat decelerating from 90 km/h to 45 km/h due to a frictional force proportional to its speed. The frictional force is expressed as f(k) = 70v, leading to the equation f = ma, which simplifies to -70v = 1000 dv/dt. Participants clarify that the integration approach must account for the negative sign and the correct formulation of the variables, emphasizing the need to integrate properly to find the time required for the boat to slow down. The solution involves rewriting the equation and integrating, with the expected answer being approximately 9.9 seconds. The conversation highlights the complexities of applying integration in physics problems and the importance of correctly interpreting the variables involved.
Tony Zalles
Messages
22
Reaction score
0
Yea well I've run into this bonus physics problem that's really hard.

Ok first off the reason its bonus is cause it involves using integration (which we haven't covered yet)

But our teacher says that's what makes it a bonus problem.

Ok here is the problem.

A 1000 kg boat is traveling at 90 km/h where its engine is shut off. The magnitude of the frictional force f(k) between boat and water is proportional to the speed v of the boat: f(k) = 70v, where v is in meters per second and f(k) is in Newtons. Find the time required for the boat to slow down to 45 km/h.

1000 kg - boat
90 km/h - 25 m/s
45 km/h - 12.5 m/s

f(k) = 70v

a = dv/dt

f(k) = ma
f = (1000 kg)(dv/dt)

Integration Rule.

f(V) = V^X -> f(V)dt = (V^X+1/X+1) + C


dt = 1000kg (70v^2/2) + C
dt = 1000 kg 35v^2 + C
dt = ?

(yea...i'm not sure where to from here...)

Um, yea. Any help would be appreciated.

Thanks,

Tony Zalles
 
Physics news on Phys.org
Yes, f= ma= m dv/dt. In this situation the friction force is "proportional to the speed v of the boat: f(k) = 70v"

(Actually, that should be f= -70v since the force is always opposite to the direction of motion. I wouldn't actually write "f(k)" since f depends on v, not k. This is telling you that k= 70.)

f= ma becomes -70v= 1000 dv/dt or dv/dt= -0.07v

You might try rewriting this as (1/v)dv= -0.07 dt or
v-1dv= -0.07 dt and integrating. Unfortunately, the integration rule you give: the integral of xndx= 1/(n+1)xn+1+ C doesn't work here: n= -1 so n+1= 0 and you can't divide by 0!

The formulas you have:
dt = 1000kg (70v^2/2) + C
dt = 1000 kg 35v^2 + C
aren't correct. You have the v in the denominator.
(By the way, if the v were in the numerator, you get that result by integrating on BOTH sides. You would have "t= ...", not dt.)
 
ehh...sorry I couldn't reply earlier.

um when I typed in f(k) I meant f subscript k, which is the coefficient of friction. Not f(k) as in, f*k.

So sorry about that secondly...um I well picked up where I left off and came down to.

.035v^2 + C = dt

But my issue here is what is v? and C?

See cause the answer to this problem (from that back of our text) is 9.9s.

I know also that dv is 12.5 m/s

and that the forces evaluated by, f(k) = 70v, at 25 m/s and 12.5 m/s, are: 1750 N and 825 N

I'm still a bit stumped...

perhaps maybe you set 70v = m(dv/dt)...but then I don't know how to resolve my constant when integrating or what to do about v, since dv is already 12.5 m/s. I don't believe then in this case dv = v.

Yea...again, sorry for the mistype earlier and any help would ofcourse be appreciated.

By the way thans for the reply hallsofivy

Thanks,
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...

Similar threads

Back
Top