Mathematica plot question, dsolve

  • Thread starter Thread starter kptsilva
  • Start date Start date
  • Tags Tags
    Mathematica Plot
AI Thread Summary
The discussion focuses on using Mathematica to solve a differential equation and plot the function b[a]/b[0.0001] against a on a logarithmic scale. The equation involves a variable w[a], defined in terms of a and a constant c, which is set to 1 for this instance. The user has encountered errors in their code while attempting to implement the solution and plot. They seek assistance in correcting the code to achieve the desired plot. The conversation highlights the challenges of solving differential equations and plotting in Mathematica.
kptsilva
Messages
33
Reaction score
0
Hey guys,

I'm using Mathematica to plot some graphs and I'm having a bit of a hard time.

First I have to solve the following equation,

2/3 a^2 b''[a] + (1 - w[a]) a b'[a] - (1 + w[a]) (1 - 3 c w[a]) b[a]

Boundary condition b'[0.0001]=0
Where;

w[a_] := 2*a^(3*(1 + c))/(1 + 2*a^(3*(1 + c)));

(c=1) (c is a variable but let's consider a particular instance c=1)

a goes from 10^-4 to 1000 in a log scale.

I want to plot b[a]/b[0.0001] vs. a

I've so far written a simple code but it is with errors.

c = 1;
w[a_] := 2*a^(3*(1 + c))/(1 + 2*a^(3*(1 + c)));
fun = 2/3 a^2 b''[a] + (1 - w[a]) a b'[
a] - (1 + w[a]) (1 - 3 c w[a]) b[a]
F[a_] = DSolve[{fun == 0, b'[10^(-4)] == 0}, b, a]
L = LogLinearPlot[Evaluate[F[a]/F[0.0001]], {a, 10^-4, 10},
PlotRange -> All];

Please can anyone help me?
 
Physics news on Phys.org
Hey guys,

I'm using Mathematica to plot some graphs and I'm having a bit of a hard time.

First I have to solve the following equation,

2/3 a^2 b''[a] + (1 - w[a]) a b'[a] - (1 + w[a]) (1 - 3 c w[a]) b[a]

Boundary condition b'[0.0001]=0
Where;

w[a_] := 2*a^(3*(1 + c))/(1 + 2*a^(3*(1 + c)));

(c=1) (c is a variable but let's consider a particular instance c=1)

a goes from 10^-4 to 1000 in a log scale.

I want to plot b[a]/b[0.0001] vs. a

I've so far written a simple code but it is with errors.

c = 1;
w[a_] := 2*a^(3*(1 + c))/(1 + 2*a^(3*(1 + c)));
fun = 2/3 a^2 b''[a] + (1 - w[a]) a b'[
a] - (1 + w[a]) (1 - 3 c w[a]) b[a]
F[a_] = DSolve[{fun == 0, b'[10^(-4)] == 0}, b, a]
L = LogLinearPlot[Evaluate[F[a]/F[0.0001]], {a, 10^-4, 10},
PlotRange -> All];
 

Similar threads

Replies
2
Views
2K
Replies
6
Views
2K
Replies
3
Views
2K
Replies
6
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
10
Views
2K
Back
Top