Mathematical Induction on rationals

mumatics
Messages
2
Reaction score
0
Hi
I'm a high school student. I gave a proof for the following theorem, but I was told by some professors that this is trivial and using natural induction twice for the rationals will do the same thing. What do you think? Is it just redundant?

Theorem:


Let P(r) be a statement about r, then if :
1) P(1) is true and,
2) \forall m,n \in N , m\geqn ; P(\frac{m}{n})\rightarrow P(\frac{m+1}{n})

Then \forall r\in Q, r\geq1 ; P(r).



(PS: I apologize for my (probable) mistakes, because I'm neither an English speaker nor familiar with Latex.)
 
Physics news on Phys.org
It's not quite true as stated; take P(r) = true if r > 0 and false otherwise. But the basic idea is right.

If you were a college student, I would agree that this is a trivial result by double induction. But as a high-school student I actually think it's pretty good. Most wouldn't think to extend induction to the rationals at all.
 
I can't get why it's not true. Did you notice r\geq1 in the last sentence?

And thank you for the reply.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
9
Views
2K
Replies
10
Views
3K
Replies
11
Views
3K
Replies
5
Views
2K
Replies
7
Views
1K
Back
Top