Mathematical methods for physicists(Numerical problems)

Saad i Riaz
Messages
7
Reaction score
0

Homework Statement



Show how to find A and B, given A+B and A-B ??
 
Physics news on Phys.org
Are they vectors?

Doesn't really matter.

\textbf{A}+\textbf{B}=\textbf{x}
\textbf{A}-\textbf{B}=\textbf{y}

Do you know how to solve a system of linear equations?
 
ya these are vectors
 
Using the two equations above, write A in terms of x and y, and write B in terms of x and y. You can do this by adding one equation to the other, and subtracting one equation from the other.
 
please explain me in detail becoz i have tried but my answer is not correct...
 
\textbf{A}+\textbf{B}=\textbf{x} (1)
\textbf{A}-\textbf{B}=\textbf{y} (2)

Add eq (1) and (2):

\left(\textbf{A}+\textbf{B}=\textbf{x}\right) + \left(\textbf{A}-\textbf{B}=\textbf{y}\right)
\left(\textbf{A}+\textbf{B}+\textbf{A}-\textbf{B}\right) = \left(\textbf{x}+\textbf{y}\right)
\left(\textbf{A}+\textbf{A}\right) = \left(\textbf{x}+\textbf{y}\right)
\left(2\textbf{A}\right) = \left(\textbf{x}+\textbf{y}\right)
\textbf{A} = \frac{\textbf{x}+\textbf{y}}{2}

Subtract eq (2) from eq (1):

\left(\textbf{A}+\textbf{B}=\textbf{x}\right) - \left(\textbf{A}-\textbf{B}=\textbf{y}\right)
\textbf{B} = \frac{\textbf{x}-\textbf{y}}{2}
 
Thnx a lot for helping me.....
 
Back
Top