psholtz
- 133
- 0
The matrix giving the relation between spherical (unit) vectors and cartesian (unit) vectors can be expressed as:
\left( \begin{array}{c} \hat{r} \\ \hat{\phi} \\ \hat{\theta} \end{array} \right) = <br /> \left( \begin{array}{ccc} \sin\theta \cos\phi & \sin\theta \sin\phi & \cos\theta \\ -\sin\phi & \cos \phi & 0 \\ \cos\theta \cos\phi & \cos\theta \sin\phi & -\sin\theta \end{array}\right) \cdot \left( \begin{array}{c} \hat{x} \\ \hat{y} \\ \hat{z} \end{array} \right)
or
T = \left( \begin{array}{ccc} \sin\theta \cos\phi & \sin\theta \sin\phi & \cos\theta \\ -\sin\phi & \cos \phi & 0 \\ \cos\theta \cos\phi & \cos\theta \sin\phi & -\sin\theta \end{array}\right)
where phi is the polar angle and theta is the azimuthal angle.
Can this matrix T be factored into simpler matrices?
\left( \begin{array}{c} \hat{r} \\ \hat{\phi} \\ \hat{\theta} \end{array} \right) = <br /> \left( \begin{array}{ccc} \sin\theta \cos\phi & \sin\theta \sin\phi & \cos\theta \\ -\sin\phi & \cos \phi & 0 \\ \cos\theta \cos\phi & \cos\theta \sin\phi & -\sin\theta \end{array}\right) \cdot \left( \begin{array}{c} \hat{x} \\ \hat{y} \\ \hat{z} \end{array} \right)
or
T = \left( \begin{array}{ccc} \sin\theta \cos\phi & \sin\theta \sin\phi & \cos\theta \\ -\sin\phi & \cos \phi & 0 \\ \cos\theta \cos\phi & \cos\theta \sin\phi & -\sin\theta \end{array}\right)
where phi is the polar angle and theta is the azimuthal angle.
Can this matrix T be factored into simpler matrices?