Matrix represntation of angular momentum operator (QM)

joker_900
Messages
53
Reaction score
0

Homework Statement


The matrix R(q) for rotating an ordinary vector by q around the z-axis is given by@

cosq -sinq 0
sinq cosq 0
0 0 1

From R calculate the matrix J(z).

Homework Equations


-

The Attempt at a Solution



All I know is that U(q) = exp[-iJ(z)q] is the unitary operator which rotates a system, and I believe that

R(q) x = U(dagger)(q) x U(q)

Where x is the position vector.

I have no idea where to go from here, other than expanding U with a taylor series but this didn't seem to go anywhere.

Thanks
 
Physics news on Phys.org
You will probably find page 315 and 316 of Shankar's Principles of Quantum Mechanic helpful.
 
AEM said:
You will probably find page 315 and 316 of Shankar's Principles of Quantum Mechanic helpful.

Thanks, but I still don't see how to do the question at all. Are the pages right - do they change with editions?
 
AEM said:
You will probably find page 315 and 316 of Shankar's Principles of Quantum Mechanic helpful.

My edition of Shankar is from 1981. By chance I was reviewing this topic the day before your original post. I'll spend some time thinking about it and see if I can help you out.
 
joker_900 said:

Homework Statement


The matrix R(q) for rotating an ordinary vector by q around the z-axis is given by@

cosq -sinq 0
sinq cosq 0
0 0 1

From R calculate the matrix J(z).

Homework Equations


-


The Attempt at a Solution



All I know is that U(q) = exp[-iJ(z)q] is the unitary operator which rotates a system, and I believe that

R(q) x = U(dagger)(q) x U(q)

Where x is the position vector.

I have no idea where to go from here, other than expanding U with a taylor series but this didn't seem to go anywhere.

Thanks

I think that the correct relation is simply R(q) = exp[-i Jz q].

Just work to first order in q. Then e^{-iJ_z q} \approx 1 - i J_z q (where 1 here is the unit matrix) . Replace cos(q) by 1 and sin(q) by q in the matrix R(q) and you will get the expression for Jz easily.
 
nrqed said:
I think that the correct relation is simply R(q) = exp[-i Jz q].

Just work to first order in q. Then e^{-iJ_z q} \approx 1 - i J_z q (where 1 here is the unit matrix) . Replace cos(q) by 1 and sin(q) by q in the matrix R(q) and you will get the expression for Jz easily.

I just logged on to make similar comments. Take the angle q to be very small, or infinitesimal, leads to the replacements given above.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top