What is the radius of a circle represented by the equation |z - z1|=k|z - z2|?

AI Thread Summary
The equation |z - z1|=k|z - z2| represents a circle, except when k=1, where it becomes a line. To determine the radius of this circle, the equation can be manipulated to resemble the standard form |z - zo|=r. The discussion includes attempts to derive the radius using geometric relationships between points z1, z2, and the circle's intersection points with the line connecting z1 and z2. Ultimately, the radius is expressed as r=dk/(k^2-1), indicating the relationship between the distance d and the fixed points. The conversation highlights the complexity of the derivation and the symmetry involved in the problem.
StephenPrivitera
Messages
360
Reaction score
0
In general, |z - zo|=r, where z_o is a fixed point and r is a positive number, represents a circle centered at z_o and with radius r. |z - z1|=k|z - z2|, where z_1 and z_2 are fixed points, also apparently represents a circle, except maybe in the case where k=1. Then we have a line, or a circle of infinite radius. So to find the radius of the circle for |z - z1|=k|z - z2|, I could try to rewrite the equation to fit |z - zo|=r. I did this, and I got a frightening answer. I shall attempt to show it here. The work is much too long and too tedious to write here in full form but I'll explain briefly. x is the x component of z, y is the y component of z, x_1 is the x component of z_1, y_1...y component of z_1, etc.
Square both sides, distribute the k^2, collect x's and y's on the left, complete the square to get (x-somthing)^2+(y-same thing)^2=some big mess
simplify the right hand side, rewrite in terms of z1 and z2 as much as possible, take the sqrt of each side,

Anyone who feels like trying this problem could verify my result/ show me a better way of doing it?
r=(k2-1)-1[squ][(k4-2k2+2)|z1|2+k2(2k2-1)|z2|2-2k2(x1x2+y1y2)]
 
Physics news on Phys.org
Hi StephenPrivitera,
the problem is surely symmetrical wrt. the line Z1 Z2.
So let's look at this line, and the 2 points A, B where the circle intersects it (points=capital, distances=small):

Z1------ka------A----a---Z2-----b-----B
|------------------kb-----------------|

Let |Z1 - Z2| = d.
From the drawing, we see:
I. d = ka + a
II. b + d = kb
III. 2r = a+b.

Three unknowns: a, b, r.
Three equations: Perfect!
 
Last edited:
Really there are four unknowns, a,b,r, and d. If you substitute in for d, then there are two equations and three unknowns. You can solve for r in terms of b or a. I did it for a and got,
r=(1/2)a/(k-1)

Also, how do you know that the diameter lies on the line z1z2?
 
You know the value of d, because you know Z1 and Z2. I defined d = |Z1 - Z2|.

Concerning the symmetry: It's clear that the circle can have only 2 points in common with the line Z1 Z2. Let's assume the center C is not on Z1 Z2. Now take the mirror image C' of C wrt. to the line Z1 Z2. The circle centered at C', and going through A, B is obviously another possible solution. Now, since you stated that the circle is defined by the given equation, this is a contradiction. Thus, C is on Z1 Z2.
 
good point, so rather than eliminating d, i should eliminate a and b;

r=dk/(k2-1)
tricky
I'm still upset the other way didn't work... There was a (k2-1)-1 factor there. Maybe the numerator can simplify somehow to dk. I'll try it again. Thanks for the help.
 
Last edited:
Originally posted by StephenPrivitera
r=dk/(k2-1)
Correct.
Glad I could help you :wink:.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top