Max Friction Coefficient for 34° Factory Box Slide in 3.2s

  • Thread starter Thread starter Robertoalva
  • Start date Start date
AI Thread Summary
To determine the maximum allowed frictional coefficient for boxes sliding down a 34° ramp in 3.2 seconds, one must calculate the required acceleration based on the ramp's length of 5.4 meters. The frictional force can be expressed using the equation Ff = μ F, where μ is the frictional coefficient. The discussion highlights the need to relate time and acceleration to find the frictional coefficient, emphasizing that the frictional coefficient is the ratio of the normal force to the maximum frictional force. Participants are encouraged to clarify their understanding of the equations involved. The solution requires integrating concepts of motion, friction, and acceleration.
Robertoalva
Messages
140
Reaction score
0
1. At the end of a factory production line, boxes start from rest and slide down a 34° ramp 5.4 m long. If the slide is to take no more than 3.2 s, what is the maximum allowed frictional coefficient?



Homework Equations


Ff= μ F


The Attempt at a Solution






Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
Hi Robertoalva,

Could you show where you are stuck in the problem please?
 
I don't know how to use the equation for the frictional coefficient! I suppose that I have to use another equation that uses time, but I'm not so sure!
 
Well, frictional coefficient is the ratio of the magnitudes of the normal force and maximum frictional force possible.

Knowing that, what would be the acceleration of the block?
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top