Max Height Attained by Water Stream in P9.81 Tank

AI Thread Summary
The discussion focuses on calculating the maximum height attained by a water stream from a tank when a valve is opened. Participants utilize Bernoulli's equation to relate pressure, velocity, and height, noting that the initial height is influenced by the angle of the stream. Confusion arises regarding the definitions of initial and final heights, with clarification that the vertical component of velocity must be considered. A participant successfully calculates the maximum height as 1.8125 meters, emphasizing the importance of understanding the relationship between mechanical energy and projectile motion. The conversation concludes with a shared understanding of the method to solve the problem effectively.
parwana
Messages
182
Reaction score
0

Homework Statement


Figure P9.81 shows a water tank with a valve at the bottom. If this valve is opened, what is the maximum height attained by the water stream coming out of the right side of the tank? Assume that h = 8.0 m, L = 1.50 m, and = 30° and that the cross-sectional area at A is very large compared with that at B.
p9_81.gif



Homework Equations


Bernouli's equation
P1 + 1/2(density)(v1)^2 + density(g)(y)= P2 + 1/2(density)(v2)^2 + density(g)(y)

The Attempt at a Solution



0+0+density(g)(y)= 0+1/2(density)(v2)^2 + density(g)(Lsin30)

I tried solving for v2


I am stuck now at this step

used that v2 as v initial to find y by

vfinal^2= vinitial^2-2g(y final-y initial)

I am not sure but would v initial be the v2 I found? And is v final 0? Also what is y final and what is y initial?

HELP
 
Physics news on Phys.org
Why do you think P1 and P2 are zero?. The water is being launched at an angle. Only the vertical component enters into the height calculation.
 
so the vertical component, which is Lsin30, is that the initial height? I am confused, I tried this again and again but I can't egt it right. And the gauge pressure is 0 since the air is touching the water, air's pressure is 1 atm
 
parwana said:
so the vertical component, which is Lsin30, is that the initial height? I am confused, I tried this again and again but I can't egt it right. And the gauge pressure is 0 since the air is touching the water, air's pressure is 1 atm

I assume they want the maximum height measured from the same place as the 8m height, but maybe they want it measured from where it leaves the spout. The second is easier, but the first can be obtained by just adding Lsinθ. You are OK on the pressure. I was misinterpreting. The height changes from 8m to Lsinθ to the height relative to the end of the spout. Using that (as I think you have done) you can solve for v at the exit of the spout. The vertical component of that velocity is v*sinθ. You can compute the height relative to the end of the spout by finding the point where the vertical velocity is zero. You can either do that by computing the time it takes to reach that point and plugging that into the y(t) equation, or you can use the equation that relates the change in the velocity squared to acceration and distance.
 
Last edited:
Hey, I solved it myself and get 1.8125 metres (I presume you already know the answer and need the method). Your method is flawed.

The Bernoulli equation tells us that the mechanical energy per unit mass, let's call it E is:

E = gz + v2/2 + (p-p0)/rho.

E = gravitational potential energy + kinetic energy + pressure energy.

When you open the valve you just say that the mechanical energy at A is the same as that at B. Because the pressure energy is the same at these points they cancel from both sides. Furthermore, because the cross-sectional at A is much larger than that at B you can ignore the kinetic energy at A. You end up with a fairly simple equation that you have to solve for velocity. Once you've got that velocity you need to find how high it gets which will involve a little projectile mechanics, if I could do it I'm sure you can.
 
thank u so much guys, I understand the method better now
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top