MHB Maximizing the Value of sin(alpha)+cos(beta) in the Interval [0, pi]

  • Thread starter Thread starter DrunkenOldFool
  • Start date Start date
AI Thread Summary
The discussion centers on finding the value of \(\sin(\alpha) + \cos(\beta)\) under the condition that \(\cos(\alpha) + \cos(\beta) - \cos(\alpha + \beta) = \frac{3}{2}\) with \(\alpha > 0\) and \(\beta < \pi\). Initial attempts suggest multiple potential solutions, but further analysis reveals that the only valid solution within the interval \([0, \pi]\) is \(\alpha = \beta = \frac{\pi}{3}\), leading to \(\sin(\alpha) + \cos(\beta) = \frac{1 + \sqrt{3}}{2}\). The method involves evaluating the function \(f(\alpha, \beta)\) and applying critical point analysis to confirm that this pair maximizes the function. Thus, the conclusion is that \(\alpha = \beta = \frac{\pi}{3}\) is the sole solution in the specified range.
DrunkenOldFool
Messages
20
Reaction score
0
If $\alpha>0$, $\beta< \pi$ and $\cos(\alpha)+\cos(\beta)-\cos(\alpha+\beta)=3/2$, then what is the value of $\sin(\alpha)+\cos(\beta)$?
 
Mathematics news on Phys.org
DrunkenOldFool said:
If $\alpha>0$, $\beta< \pi$ and $\cos(\alpha)+\cos(\beta)-\cos(\alpha+\beta)=3/2$, then what is the value of $\sin(\alpha)+\cos(\beta)$?

Hi DrunkenOldFool, :)

I am not sure whether there's a unique solution to your question. For if we take, \(sin(\alpha)+\cos(\beta)=a\) then using \(\cos\alpha+\cos\beta-\cos(\alpha+\beta)=\frac{3}{2}\) we have,

\[\cos\alpha+a-\sin\alpha-\cos\alpha(a-\sin\alpha)+\sin\alpha\sqrt{1-(a-sin\alpha)^2}=\frac{3}{2}\]

Solving this using Wolfram we get,

\[a=\frac{5}{4}\mbox{ and }\alpha=(2n+1)\pi\mbox{ where }n\in\mathbb{Z}\]

\[a=\frac{1+\sqrt{3}}{2}\mbox{ and }\alpha=\frac{1}{3}(6n+1)\pi\mbox{ where }n\in\mathbb{Z}\]

You can verify that both of these are solutions.

Kind Regards,
Sudharaka.
 
Thank You Sudharaka! Can you suggest any other simpler method?(f)
 
DrunkenOldFool said:
Thank You Sudharaka! Can you suggest any other simpler method?(f)

Hi DrunkenOldFool, :)

What I have shown you is that if you are given, \(\cos(\alpha)+\cos(\beta)-\cos(\alpha+\beta)=3/2\) the value of \(\sin(\alpha)+\cos(\beta)\) will take different values depending on the value you choose for \(\alpha\). If you choose \(\alpha=(2n+1)\pi\mbox{ where }n\in\mathbb{Z}\) you have a corresponding \(\beta\) value which you can find from the equation given. For this \(\alpha\) and \(\beta\) values we have \(\sin(\alpha)+\cos(\beta)=\frac{5}{4}\). Similarly for \(\alpha=\frac{1}{3}(6n+1)\pi\mbox{ where }n\in\mathbb{Z}\) and the corresponding \(\beta\) value you have \(\sin(\alpha)+\cos(\beta)=\frac{1+\sqrt{3}}{2}\).

Therefore the value of \(\sin(\alpha)+\cos(\beta)\) is not dependent on the given equation alone. For different values of \(\alpha\) you have different values for \(\sin(\alpha)+\cos(\beta)\). For the moment I cannot think of any simpler method to obtain these solutions. :)

Kind Regards,
Sudharaka.
 
Sudharaka said:
Hi DrunkenOldFool, :)

What I have shown you is that if you are given, \(\cos(\alpha)+\cos(\beta)-\cos(\alpha+\beta)=3/2\) the value of \(\sin(\alpha)+\cos(\beta)\) will take different values depending on the value you choose for \(\alpha\). If you choose \(\alpha=(2n+1)\pi\mbox{ where }n\in\mathbb{Z}\) you have a corresponding \(\beta\) value which you can find from the equation given. For this \(\alpha\) and \(\beta\) values we have \(\sin(\alpha)+\cos(\beta)=\frac{5}{4}\). Similarly for \(\alpha=\frac{1}{3}(6n+1)\pi\mbox{ where }n\in\mathbb{Z}\) and the corresponding \(\beta\) value you have \(\sin(\alpha)+\cos(\beta)=\frac{1+\sqrt{3}}{2}\).
The solution $\alpha=(2n+1)\pi$ does not work, because in that case it would follow that $\sin\alpha=0$. The equation $\sin(\alpha)+\cos(\beta)=\frac{5}{4}$ then implies that $\cos(\beta)=\frac{5}{4}$, which is not possible.

It seems that the only solution with $\alpha$ and $\beta$ lying between 0 and $\pi$ is $\alpha=\beta=\pi/3$, in which case $\sin(\alpha)+\cos(\beta)=\frac{1+\sqrt{3}}{2}.$
 
Opalg said:
The solution $\alpha=(2n+1)\pi$ does not work, because in that case it would follow that $\sin\alpha=0$. The equation $\sin(\alpha)+\cos(\beta)=\frac{5}{4}$ then implies that $\cos(\beta)=\frac{5}{4}$, which is not possible.

It seems that the only solution with $\alpha$ and $\beta$ lying between 0 and $\pi$ is $\alpha=\beta=\pi/3$, in which case $\sin(\alpha)+\cos(\beta)=\frac{1+\sqrt{3}}{2}.$

Hi Opalg, :)

Thank you. I had overlooked that. :)

Here is a method that I thought of to show \(\alpha=\beta=\frac{\pi}{3}\) is the only solution in \(\left[0,\, \pi\right]\).

Let, \(f(\alpha,\,\beta)=\cos\alpha+\cos\beta-\cos(\alpha+\beta)\) where \(0<\alpha,\,\beta<\frac{\pi}{2}\).

\[f_{\alpha}=-sin\alpha+\cos(\alpha+\beta)\mbox{ and }f_{\beta}=-\sin\beta+\cos(\alpha+\beta)\]

When, \(f_{\alpha}=f_{\beta}=0\) we get,

\[\sin\alpha=\sin\beta\]

\[\therefore \alpha=\beta\]

Therefore \((\alpha,\,\alpha)\) is a critical point of \(f\).

Also, (Refer: second partial derivative test)

\[D(\alpha,\,\alpha)=f_{\alpha\alpha}(\alpha,\, \alpha)f_{\beta\beta}(\alpha,\, \alpha)-f^{2}_{\alpha\beta}(\alpha,\,\alpha)\]

\[\therefore D(\alpha,\,\alpha)=\left(\cos 2\alpha-\cos\alpha\right)^{2}>0\]

So \((\alpha,\,\alpha)\) is a relative maximum.

\[f(\alpha,\,\alpha)=\cos\alpha+\cos\alpha-\cos(\alpha+\alpha)=2\cos\alpha-\cos(2\alpha)\]

Using the first derivative test we can show that \(f(\alpha,\,\alpha)\) has a maximum when, \(\cos\alpha=\frac{1}{2}\Rightarrow\alpha=\frac{ \pi}{3}\). Hence \(f(\alpha,\,\beta)\) maximizes at the point \(\left(\frac{\pi}{3},\,\frac{\pi}{3}\right)\). Also, \(f\left(\frac{\pi}{3},\,\frac{\pi}{3}\right)= \frac{3}{2}\). Similarly by defining \(f(\alpha,\,\beta)=\cos\alpha+\cos\beta-\cos(\alpha+\beta)\) where \(\frac{\pi}{2}<\alpha,\,\beta<\pi\) we can show that \(f\) maximizes at \(\alpha=\frac{2\pi}{3}\). However \(f\left(\frac{2\pi}{3},\,\frac{2\pi}{3}\right)=-\frac{1}{2}\).

Therefore \(\alpha=\beta=\frac{\pi}{3}\) is the only solution of the equation in \(\left[0,\,\pi\right] \).

Kind Regards,
Sudharaka.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top