Maximizing the Value of sin(alpha)+cos(beta) in the Interval [0, pi]

  • Context: MHB 
  • Thread starter Thread starter DrunkenOldFool
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on determining the value of \(\sin(\alpha) + \cos(\beta)\) under the constraint \(\cos(\alpha) + \cos(\beta) - \cos(\alpha + \beta) = \frac{3}{2}\). The only valid solution within the interval \([0, \pi]\) is found to be \(\alpha = \beta = \frac{\pi}{3}\), yielding \(\sin(\alpha) + \cos(\beta) = \frac{1 + \sqrt{3}}{2}\). Alternative solutions involving \(\alpha = (2n + 1)\pi\) were dismissed as they lead to invalid values for \(\cos(\beta)\).

PREREQUISITES
  • Understanding of trigonometric identities and functions
  • Familiarity with calculus concepts such as critical points and the second partial derivative test
  • Knowledge of the unit circle and angle measures in radians
  • Ability to solve equations involving trigonometric functions
NEXT STEPS
  • Study the implications of the cosine rule in trigonometric identities
  • Learn about critical points and optimization in multivariable calculus
  • Explore the properties of trigonometric functions within specific intervals
  • Investigate the behavior of \(\sin\) and \(\cos\) functions at various angles
USEFUL FOR

Mathematicians, students studying calculus and trigonometry, and anyone interested in solving trigonometric equations and understanding their geometric interpretations.

DrunkenOldFool
Messages
20
Reaction score
0
If $\alpha>0$, $\beta< \pi$ and $\cos(\alpha)+\cos(\beta)-\cos(\alpha+\beta)=3/2$, then what is the value of $\sin(\alpha)+\cos(\beta)$?
 
Physics news on Phys.org
DrunkenOldFool said:
If $\alpha>0$, $\beta< \pi$ and $\cos(\alpha)+\cos(\beta)-\cos(\alpha+\beta)=3/2$, then what is the value of $\sin(\alpha)+\cos(\beta)$?

Hi DrunkenOldFool, :)

I am not sure whether there's a unique solution to your question. For if we take, \(sin(\alpha)+\cos(\beta)=a\) then using \(\cos\alpha+\cos\beta-\cos(\alpha+\beta)=\frac{3}{2}\) we have,

\[\cos\alpha+a-\sin\alpha-\cos\alpha(a-\sin\alpha)+\sin\alpha\sqrt{1-(a-sin\alpha)^2}=\frac{3}{2}\]

Solving this using Wolfram we get,

\[a=\frac{5}{4}\mbox{ and }\alpha=(2n+1)\pi\mbox{ where }n\in\mathbb{Z}\]

\[a=\frac{1+\sqrt{3}}{2}\mbox{ and }\alpha=\frac{1}{3}(6n+1)\pi\mbox{ where }n\in\mathbb{Z}\]

You can verify that both of these are solutions.

Kind Regards,
Sudharaka.
 
Thank You Sudharaka! Can you suggest any other simpler method?(f)
 
DrunkenOldFool said:
Thank You Sudharaka! Can you suggest any other simpler method?(f)

Hi DrunkenOldFool, :)

What I have shown you is that if you are given, \(\cos(\alpha)+\cos(\beta)-\cos(\alpha+\beta)=3/2\) the value of \(\sin(\alpha)+\cos(\beta)\) will take different values depending on the value you choose for \(\alpha\). If you choose \(\alpha=(2n+1)\pi\mbox{ where }n\in\mathbb{Z}\) you have a corresponding \(\beta\) value which you can find from the equation given. For this \(\alpha\) and \(\beta\) values we have \(\sin(\alpha)+\cos(\beta)=\frac{5}{4}\). Similarly for \(\alpha=\frac{1}{3}(6n+1)\pi\mbox{ where }n\in\mathbb{Z}\) and the corresponding \(\beta\) value you have \(\sin(\alpha)+\cos(\beta)=\frac{1+\sqrt{3}}{2}\).

Therefore the value of \(\sin(\alpha)+\cos(\beta)\) is not dependent on the given equation alone. For different values of \(\alpha\) you have different values for \(\sin(\alpha)+\cos(\beta)\). For the moment I cannot think of any simpler method to obtain these solutions. :)

Kind Regards,
Sudharaka.
 
Sudharaka said:
Hi DrunkenOldFool, :)

What I have shown you is that if you are given, \(\cos(\alpha)+\cos(\beta)-\cos(\alpha+\beta)=3/2\) the value of \(\sin(\alpha)+\cos(\beta)\) will take different values depending on the value you choose for \(\alpha\). If you choose \(\alpha=(2n+1)\pi\mbox{ where }n\in\mathbb{Z}\) you have a corresponding \(\beta\) value which you can find from the equation given. For this \(\alpha\) and \(\beta\) values we have \(\sin(\alpha)+\cos(\beta)=\frac{5}{4}\). Similarly for \(\alpha=\frac{1}{3}(6n+1)\pi\mbox{ where }n\in\mathbb{Z}\) and the corresponding \(\beta\) value you have \(\sin(\alpha)+\cos(\beta)=\frac{1+\sqrt{3}}{2}\).
The solution $\alpha=(2n+1)\pi$ does not work, because in that case it would follow that $\sin\alpha=0$. The equation $\sin(\alpha)+\cos(\beta)=\frac{5}{4}$ then implies that $\cos(\beta)=\frac{5}{4}$, which is not possible.

It seems that the only solution with $\alpha$ and $\beta$ lying between 0 and $\pi$ is $\alpha=\beta=\pi/3$, in which case $\sin(\alpha)+\cos(\beta)=\frac{1+\sqrt{3}}{2}.$
 
Opalg said:
The solution $\alpha=(2n+1)\pi$ does not work, because in that case it would follow that $\sin\alpha=0$. The equation $\sin(\alpha)+\cos(\beta)=\frac{5}{4}$ then implies that $\cos(\beta)=\frac{5}{4}$, which is not possible.

It seems that the only solution with $\alpha$ and $\beta$ lying between 0 and $\pi$ is $\alpha=\beta=\pi/3$, in which case $\sin(\alpha)+\cos(\beta)=\frac{1+\sqrt{3}}{2}.$

Hi Opalg, :)

Thank you. I had overlooked that. :)

Here is a method that I thought of to show \(\alpha=\beta=\frac{\pi}{3}\) is the only solution in \(\left[0,\, \pi\right]\).

Let, \(f(\alpha,\,\beta)=\cos\alpha+\cos\beta-\cos(\alpha+\beta)\) where \(0<\alpha,\,\beta<\frac{\pi}{2}\).

\[f_{\alpha}=-sin\alpha+\cos(\alpha+\beta)\mbox{ and }f_{\beta}=-\sin\beta+\cos(\alpha+\beta)\]

When, \(f_{\alpha}=f_{\beta}=0\) we get,

\[\sin\alpha=\sin\beta\]

\[\therefore \alpha=\beta\]

Therefore \((\alpha,\,\alpha)\) is a critical point of \(f\).

Also, (Refer: second partial derivative test)

\[D(\alpha,\,\alpha)=f_{\alpha\alpha}(\alpha,\, \alpha)f_{\beta\beta}(\alpha,\, \alpha)-f^{2}_{\alpha\beta}(\alpha,\,\alpha)\]

\[\therefore D(\alpha,\,\alpha)=\left(\cos 2\alpha-\cos\alpha\right)^{2}>0\]

So \((\alpha,\,\alpha)\) is a relative maximum.

\[f(\alpha,\,\alpha)=\cos\alpha+\cos\alpha-\cos(\alpha+\alpha)=2\cos\alpha-\cos(2\alpha)\]

Using the first derivative test we can show that \(f(\alpha,\,\alpha)\) has a maximum when, \(\cos\alpha=\frac{1}{2}\Rightarrow\alpha=\frac{ \pi}{3}\). Hence \(f(\alpha,\,\beta)\) maximizes at the point \(\left(\frac{\pi}{3},\,\frac{\pi}{3}\right)\). Also, \(f\left(\frac{\pi}{3},\,\frac{\pi}{3}\right)= \frac{3}{2}\). Similarly by defining \(f(\alpha,\,\beta)=\cos\alpha+\cos\beta-\cos(\alpha+\beta)\) where \(\frac{\pi}{2}<\alpha,\,\beta<\pi\) we can show that \(f\) maximizes at \(\alpha=\frac{2\pi}{3}\). However \(f\left(\frac{2\pi}{3},\,\frac{2\pi}{3}\right)=-\frac{1}{2}\).

Therefore \(\alpha=\beta=\frac{\pi}{3}\) is the only solution of the equation in \(\left[0,\,\pi\right] \).

Kind Regards,
Sudharaka.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
46
Views
5K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K