MHB Maximizing the Value of sin(alpha)+cos(beta) in the Interval [0, pi]

  • Thread starter Thread starter DrunkenOldFool
  • Start date Start date
Click For Summary
The discussion centers on finding the value of \(\sin(\alpha) + \cos(\beta)\) under the condition that \(\cos(\alpha) + \cos(\beta) - \cos(\alpha + \beta) = \frac{3}{2}\) with \(\alpha > 0\) and \(\beta < \pi\). Initial attempts suggest multiple potential solutions, but further analysis reveals that the only valid solution within the interval \([0, \pi]\) is \(\alpha = \beta = \frac{\pi}{3}\), leading to \(\sin(\alpha) + \cos(\beta) = \frac{1 + \sqrt{3}}{2}\). The method involves evaluating the function \(f(\alpha, \beta)\) and applying critical point analysis to confirm that this pair maximizes the function. Thus, the conclusion is that \(\alpha = \beta = \frac{\pi}{3}\) is the sole solution in the specified range.
DrunkenOldFool
Messages
20
Reaction score
0
If $\alpha>0$, $\beta< \pi$ and $\cos(\alpha)+\cos(\beta)-\cos(\alpha+\beta)=3/2$, then what is the value of $\sin(\alpha)+\cos(\beta)$?
 
Mathematics news on Phys.org
DrunkenOldFool said:
If $\alpha>0$, $\beta< \pi$ and $\cos(\alpha)+\cos(\beta)-\cos(\alpha+\beta)=3/2$, then what is the value of $\sin(\alpha)+\cos(\beta)$?

Hi DrunkenOldFool, :)

I am not sure whether there's a unique solution to your question. For if we take, \(sin(\alpha)+\cos(\beta)=a\) then using \(\cos\alpha+\cos\beta-\cos(\alpha+\beta)=\frac{3}{2}\) we have,

\[\cos\alpha+a-\sin\alpha-\cos\alpha(a-\sin\alpha)+\sin\alpha\sqrt{1-(a-sin\alpha)^2}=\frac{3}{2}\]

Solving this using Wolfram we get,

\[a=\frac{5}{4}\mbox{ and }\alpha=(2n+1)\pi\mbox{ where }n\in\mathbb{Z}\]

\[a=\frac{1+\sqrt{3}}{2}\mbox{ and }\alpha=\frac{1}{3}(6n+1)\pi\mbox{ where }n\in\mathbb{Z}\]

You can verify that both of these are solutions.

Kind Regards,
Sudharaka.
 
Thank You Sudharaka! Can you suggest any other simpler method?(f)
 
DrunkenOldFool said:
Thank You Sudharaka! Can you suggest any other simpler method?(f)

Hi DrunkenOldFool, :)

What I have shown you is that if you are given, \(\cos(\alpha)+\cos(\beta)-\cos(\alpha+\beta)=3/2\) the value of \(\sin(\alpha)+\cos(\beta)\) will take different values depending on the value you choose for \(\alpha\). If you choose \(\alpha=(2n+1)\pi\mbox{ where }n\in\mathbb{Z}\) you have a corresponding \(\beta\) value which you can find from the equation given. For this \(\alpha\) and \(\beta\) values we have \(\sin(\alpha)+\cos(\beta)=\frac{5}{4}\). Similarly for \(\alpha=\frac{1}{3}(6n+1)\pi\mbox{ where }n\in\mathbb{Z}\) and the corresponding \(\beta\) value you have \(\sin(\alpha)+\cos(\beta)=\frac{1+\sqrt{3}}{2}\).

Therefore the value of \(\sin(\alpha)+\cos(\beta)\) is not dependent on the given equation alone. For different values of \(\alpha\) you have different values for \(\sin(\alpha)+\cos(\beta)\). For the moment I cannot think of any simpler method to obtain these solutions. :)

Kind Regards,
Sudharaka.
 
Sudharaka said:
Hi DrunkenOldFool, :)

What I have shown you is that if you are given, \(\cos(\alpha)+\cos(\beta)-\cos(\alpha+\beta)=3/2\) the value of \(\sin(\alpha)+\cos(\beta)\) will take different values depending on the value you choose for \(\alpha\). If you choose \(\alpha=(2n+1)\pi\mbox{ where }n\in\mathbb{Z}\) you have a corresponding \(\beta\) value which you can find from the equation given. For this \(\alpha\) and \(\beta\) values we have \(\sin(\alpha)+\cos(\beta)=\frac{5}{4}\). Similarly for \(\alpha=\frac{1}{3}(6n+1)\pi\mbox{ where }n\in\mathbb{Z}\) and the corresponding \(\beta\) value you have \(\sin(\alpha)+\cos(\beta)=\frac{1+\sqrt{3}}{2}\).
The solution $\alpha=(2n+1)\pi$ does not work, because in that case it would follow that $\sin\alpha=0$. The equation $\sin(\alpha)+\cos(\beta)=\frac{5}{4}$ then implies that $\cos(\beta)=\frac{5}{4}$, which is not possible.

It seems that the only solution with $\alpha$ and $\beta$ lying between 0 and $\pi$ is $\alpha=\beta=\pi/3$, in which case $\sin(\alpha)+\cos(\beta)=\frac{1+\sqrt{3}}{2}.$
 
Opalg said:
The solution $\alpha=(2n+1)\pi$ does not work, because in that case it would follow that $\sin\alpha=0$. The equation $\sin(\alpha)+\cos(\beta)=\frac{5}{4}$ then implies that $\cos(\beta)=\frac{5}{4}$, which is not possible.

It seems that the only solution with $\alpha$ and $\beta$ lying between 0 and $\pi$ is $\alpha=\beta=\pi/3$, in which case $\sin(\alpha)+\cos(\beta)=\frac{1+\sqrt{3}}{2}.$

Hi Opalg, :)

Thank you. I had overlooked that. :)

Here is a method that I thought of to show \(\alpha=\beta=\frac{\pi}{3}\) is the only solution in \(\left[0,\, \pi\right]\).

Let, \(f(\alpha,\,\beta)=\cos\alpha+\cos\beta-\cos(\alpha+\beta)\) where \(0<\alpha,\,\beta<\frac{\pi}{2}\).

\[f_{\alpha}=-sin\alpha+\cos(\alpha+\beta)\mbox{ and }f_{\beta}=-\sin\beta+\cos(\alpha+\beta)\]

When, \(f_{\alpha}=f_{\beta}=0\) we get,

\[\sin\alpha=\sin\beta\]

\[\therefore \alpha=\beta\]

Therefore \((\alpha,\,\alpha)\) is a critical point of \(f\).

Also, (Refer: second partial derivative test)

\[D(\alpha,\,\alpha)=f_{\alpha\alpha}(\alpha,\, \alpha)f_{\beta\beta}(\alpha,\, \alpha)-f^{2}_{\alpha\beta}(\alpha,\,\alpha)\]

\[\therefore D(\alpha,\,\alpha)=\left(\cos 2\alpha-\cos\alpha\right)^{2}>0\]

So \((\alpha,\,\alpha)\) is a relative maximum.

\[f(\alpha,\,\alpha)=\cos\alpha+\cos\alpha-\cos(\alpha+\alpha)=2\cos\alpha-\cos(2\alpha)\]

Using the first derivative test we can show that \(f(\alpha,\,\alpha)\) has a maximum when, \(\cos\alpha=\frac{1}{2}\Rightarrow\alpha=\frac{ \pi}{3}\). Hence \(f(\alpha,\,\beta)\) maximizes at the point \(\left(\frac{\pi}{3},\,\frac{\pi}{3}\right)\). Also, \(f\left(\frac{\pi}{3},\,\frac{\pi}{3}\right)= \frac{3}{2}\). Similarly by defining \(f(\alpha,\,\beta)=\cos\alpha+\cos\beta-\cos(\alpha+\beta)\) where \(\frac{\pi}{2}<\alpha,\,\beta<\pi\) we can show that \(f\) maximizes at \(\alpha=\frac{2\pi}{3}\). However \(f\left(\frac{2\pi}{3},\,\frac{2\pi}{3}\right)=-\frac{1}{2}\).

Therefore \(\alpha=\beta=\frac{\pi}{3}\) is the only solution of the equation in \(\left[0,\,\pi\right] \).

Kind Regards,
Sudharaka.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
1K
Replies
46
Views
3K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
11K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
1K