Maximum charge on the plates of a capacitor

AI Thread Summary
The discussion focuses on calculating the maximum charge on the plates of a capacitor using Faraday's Law and circuit analysis. The derived formula for maximum charge, q_max, is found to be negative, which raises a question about its physical significance. The calculations involve integrating the electromotive force and applying Kirchhoff's loop rule, leading to the conclusion that the upper plate should be positively charged while the lower plate is negatively charged. Participants are prompted to verify the correctness of the solution and the choice of the surface area vector in the magnetic flux calculation. The overall inquiry centers on the implications of obtaining a negative maximum charge value.
lorenz0
Messages
151
Reaction score
28
Homework Statement
A square circuit of side ##a=10cm## with a resistance ##R=1k\Omega## and a capacitor ##C=100nF## is in a region of space where there is a ##\vec{B}## field perpendicular to circuit, pointing inward, which changes according to ##\frac{dB}{dt}=-0.01 T/s##
Find the maximum charge on the plates of the capacitor and which plate is going to be positively charged and which one is going to be negatively charged.
Relevant Equations
##\oint_{\Gamma}\vec{E}\cdot d\vec{l}=-\frac{d\phi(\vec{B})}{dt}##
What I have done:

The electromotive force due to Faraday's Law is: ##\mathcal{E}=-\frac{d\phi(\vec{B})}{dt}=\frac{d}{dt}(Ba^2)=a^2\frac{dB}{dt}=-10^{-4}V.##
In the circuit, going around the loop in a clockwise fashion:
##\oint_{\Gamma}\vec{E}\cdot d\vec{l}=-\frac{d\phi(\vec{B})}{dt}\Rightarrow iR+\frac{q}{C}=\mathcal{E}\Rightarrow \frac{dq}{dt}R+\frac{q}{C}=\mathcal{E}\Rightarrow \frac{dq}{dt}=-\frac{q-C\mathcal{E}}{RC}##
##\Rightarrow \int_{0}^{q}\frac{d\bar{q}}{\bar{q}-C\mathcal{E}}=-\int_{0}^{t}\frac{d\bar{t}}{RC}\Rightarrow [\ln(\bar{q}-C\mathcal{E})]_{0}^{q}=-\frac{t}{RC}\Rightarrow \ln\left(-\frac{q}{C\mathcal{E}}+1\right)=-\frac{t}{RC}\Rightarrow q(t)=C\mathcal{E}(1-e^{-\frac{t}{RC}})## so ##q_{max}=C\mathcal{E}=\left(100\cdot 10^{-9}\cdot (-10^{-4})\right) C=-10^{-11} C##.

Since the current goes around in a clockwise fashion, the upper plate should be charge positively and the bottom one negatively.

Now, I have a doubt: does it make sense that ##q_{max}## comes out negative?

Other than that, is my solution correct? Thanks
 

Attachments

  • circuit.png
    circuit.png
    6.4 KB · Views: 143
Last edited:
Physics news on Phys.org
Remember: ##\Phi=\int \vec B \cdot d\vec S##. How did you choose ##d\vec S##? Check signs
 
Gordianus said:
Remember: ##\Phi=\int \vec B \cdot d\vec S##. How did you choose ##d\vec S##? Check signs
##\phi=\int_{S}\vec{B}\cdot d\vec{S}## and since ##\vec{B}## is pointing inside the page and the area is oriented with the normal pointing away from the page this becomes ##\int_{S}(-B)dS=-B\int_{S}dS=-Ba^2## so ##\mathcal{E}=-\frac{d}{dt}\phi=-\frac{d}{dt}(-Ba^2)=a^2\frac{dB}{dt}.##
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top