Maximum charge on the plates of a capacitor

AI Thread Summary
The discussion focuses on calculating the maximum charge on the plates of a capacitor using Faraday's Law and circuit analysis. The derived formula for maximum charge, q_max, is found to be negative, which raises a question about its physical significance. The calculations involve integrating the electromotive force and applying Kirchhoff's loop rule, leading to the conclusion that the upper plate should be positively charged while the lower plate is negatively charged. Participants are prompted to verify the correctness of the solution and the choice of the surface area vector in the magnetic flux calculation. The overall inquiry centers on the implications of obtaining a negative maximum charge value.
lorenz0
Messages
151
Reaction score
28
Homework Statement
A square circuit of side ##a=10cm## with a resistance ##R=1k\Omega## and a capacitor ##C=100nF## is in a region of space where there is a ##\vec{B}## field perpendicular to circuit, pointing inward, which changes according to ##\frac{dB}{dt}=-0.01 T/s##
Find the maximum charge on the plates of the capacitor and which plate is going to be positively charged and which one is going to be negatively charged.
Relevant Equations
##\oint_{\Gamma}\vec{E}\cdot d\vec{l}=-\frac{d\phi(\vec{B})}{dt}##
What I have done:

The electromotive force due to Faraday's Law is: ##\mathcal{E}=-\frac{d\phi(\vec{B})}{dt}=\frac{d}{dt}(Ba^2)=a^2\frac{dB}{dt}=-10^{-4}V.##
In the circuit, going around the loop in a clockwise fashion:
##\oint_{\Gamma}\vec{E}\cdot d\vec{l}=-\frac{d\phi(\vec{B})}{dt}\Rightarrow iR+\frac{q}{C}=\mathcal{E}\Rightarrow \frac{dq}{dt}R+\frac{q}{C}=\mathcal{E}\Rightarrow \frac{dq}{dt}=-\frac{q-C\mathcal{E}}{RC}##
##\Rightarrow \int_{0}^{q}\frac{d\bar{q}}{\bar{q}-C\mathcal{E}}=-\int_{0}^{t}\frac{d\bar{t}}{RC}\Rightarrow [\ln(\bar{q}-C\mathcal{E})]_{0}^{q}=-\frac{t}{RC}\Rightarrow \ln\left(-\frac{q}{C\mathcal{E}}+1\right)=-\frac{t}{RC}\Rightarrow q(t)=C\mathcal{E}(1-e^{-\frac{t}{RC}})## so ##q_{max}=C\mathcal{E}=\left(100\cdot 10^{-9}\cdot (-10^{-4})\right) C=-10^{-11} C##.

Since the current goes around in a clockwise fashion, the upper plate should be charge positively and the bottom one negatively.

Now, I have a doubt: does it make sense that ##q_{max}## comes out negative?

Other than that, is my solution correct? Thanks
 

Attachments

  • circuit.png
    circuit.png
    6.4 KB · Views: 145
Last edited:
Physics news on Phys.org
Remember: ##\Phi=\int \vec B \cdot d\vec S##. How did you choose ##d\vec S##? Check signs
 
Gordianus said:
Remember: ##\Phi=\int \vec B \cdot d\vec S##. How did you choose ##d\vec S##? Check signs
##\phi=\int_{S}\vec{B}\cdot d\vec{S}## and since ##\vec{B}## is pointing inside the page and the area is oriented with the normal pointing away from the page this becomes ##\int_{S}(-B)dS=-B\int_{S}dS=-Ba^2## so ##\mathcal{E}=-\frac{d}{dt}\phi=-\frac{d}{dt}(-Ba^2)=a^2\frac{dB}{dt}.##
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Back
Top