Maximum Entropy in Gaussian Setting

ferreat
Messages
2
Reaction score
0
Hello,
I have a doubt about the distribution of random variables that maximize the differential entropy in a set of inequalities. It is well known that the Normal distribution maximizes the differential entropy. I have the following set of inequalities:

T1 < I(V;Y1|U)
T2 < I(U;Y2)
T3 < I(X1,X2;Y3|V)
T4 < I(X1,X2;Y3)

where, Y1=X1+N1, Y2=a*X1+N2, Y3=b*X1+X2+N3. N1,N2,N3 are Gaussian ~ N(0,1). The lower case a and b are positive real numbers a < b. U, V, X1 and X2 are random variables. I want to maximize that set of inequalities. I know the following:

(i) From T4, h(Y3) maximum is when Y3 is Gaussian then X1 and X2 are Gaussian.

(ii) From T2 we maximize it by having h(Y2) or h(a*X1+N2) maximum. From this by the Entropy Power Inequality (EPI) we bound -h(a*X1+N2|U) and have X1|U Gaussian.

(iii) From T1 we maximize it by having h(Y1|U) or h(X1+N1|U) maximum which we can do as -h(a*X1+N2|U) in the part ii can be bounded having Y1 Gaussian (satisfying the maximum entropy theorem).

The Question:

From T3, can I assume that jointly Gaussian distribution will maximize h(Y3|V) or h(b*X1+X2+N3) having the assumptions i,ii,iii ?

My aim is to show that jointly Gaussian distribution of U, V, X1 and X2 maximizes the set of inequalities. I hope anyone can help me out with this.
 
Physics news on Phys.org
I don't understand your notation. Is "T4" a number or is it only a designator for an expression? Are the vertical bars "|" to denote absolute values? - conditional probabilities?
 
Thanks Stephen for your reply. Basically the set of inequalities is what is known in Information Theory as a rate region:
T1 < I(V;Y1|U)
T2 < I(U;Y2)
T3 < I(X1,X2;Y3|V)
T1+T2+T3 < I(X1,X2;Y3).
T1, T2 adn T3 are the rates obtained when transmitting messages 1, 2 and 3. The I's are Mutual Informations and the vertical bars "|" indicate conditioning. For instance I(V;Y1|U) = h(Y1|U) - h(Y1|U,V) where h(x) is the differential entropy.
My question is basically is after having assumed h(X1+N1|U) maximum implies (X1+N1|U) Gaussian in (iii), could I assume h(b*X1+X2+N3|V) maximum implies (b*X1+X2+N3|V) Gaussian? I know if I hadn't assumed (i,ii,iii) this last question would be affirmative, but having (i,ii,iii) is it still true?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top