Maxwell's Eqns- HELP - Spherical EM wave

AI Thread Summary
The discussion focuses on demonstrating that the electric field of a spherical electromagnetic wave is consistent with Maxwell's equations and finding the corresponding magnetic field. The user calculated the curl of the electric field but encountered difficulties integrating with respect to time due to confusion about the variables involved. It was clarified that the phi indicates a unit vector and that the determinant method for calculating the curl may not be applicable in spherical coordinates. Participants suggested referring to established expressions for curl in spherical coordinates and emphasized treating theta and r as constants during integration. Overall, the conversation highlights the complexities of applying Maxwell's equations in spherical coordinates and the importance of proper methodology.
Sean.Hampson
Messages
2
Reaction score
0

Homework Statement



The electric field of a spherical electromagnetic wave in vacuum can be written in the form of:

E(r,θ,phi)= A(sin(θ)/r)*[cos(kr-ωt)-(1/kr)sin(kr-ωt)]phi

Show that E is consistent with ALL of Maxwell's equations in vacuum and find the associated magnetic field.

Homework Equations



Maxwell's Equations


The Attempt at a Solution



I calculated Curl E, which came out as

(Acos(θ)/r^2sin(phi))*(sin(kr-ωt)/ω) +(2Asin(theta)/r^2)*(sin(kr-ωt)/ω) -(kAsin(θ)/r)*(sin(kr-ωt)/ω)+(Asin(θ)/kr^3)*(cos(kr-ωt)/ω)...

I then tried to take the integral of this with respect to t to find B. although I ran into trouble, unknowing what to do with theta or r...

Any help would be much appreciated, maths isn't a strong point so I struggle with these type of questions.
 
Physics news on Phys.org
E has to be a vector, what direction is it in? Does the phi at the end indicate a unit vector? The curl should not be such a long expression.
 
Yes the Phi indicates a unit vector,

so since we're working in the direction of phi, the E x Curl is

|r ... theta ...phi |
|d/dr...[(1/r*sin(phi))*d/dtheta] ...[(1/r) d/dphi] |
|0... 0 ...E |

I've tried to represent it well here, I hope it makes sense. I just petformed the Determinant and I got that long line out. I also used maple and got something quite similar :/ any suggestions ?

Thank you for your help.
 
I'm not so sure the determinant trick works for calculating the curl in spherical coordinates. As far as I know it only applies in cartesian, though I could be wrong. Looking at the expression from the Griffiths text for curl in spherical coordinates, we only have E_{\phi} so it reduces to:
<br /> \nabla \times {E} = \frac{1}{rsin\theta} \left( \frac{\partial}{\partial\theta}(sin\theta E_{\phi}) \right) \hat{r} - \frac{1}{r}\left( \frac{\partial}{\partial r}(r E_{\phi})\right) \hat{\theta}<br />

I want you to work that out yourself, I don't think it works out to the same expression that you got. I underestimated the size of the curl, I anticipated it only depending on one term.. I was wrong =(. For future problems just refer to the expression in the cover of Griffiths if that's the text you're using.

As for 'what to do with the theta or r', you're integrating with respect to time, so they don't even come into the picture, just integrate as if they were constants.
 
Last edited:
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top