Maxwell's Equations and Lorentz Transformation

jomel_maroma
Messages
1
Reaction score
0
Hi! I'm having problems with this homework my professor gave us this morning: Prove that Maxwell's equations is invariant under Lorentz Transformation.

I'm just currently in third year, and we haven't been taught tensors yet. The extent of what I know mathematically is only until gradient, divergence, curl, and the like.

I've been trying to do the "∇.B=0" one but there always is a term that doesn't cancel out. Can anyone show me how to do it? ^I just need an example. Thank you!
 
Physics news on Phys.org
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top