Maxwell's or Schrodinger's Light Wave

  • Thread starter Thread starter RonLevy
  • Start date Start date
  • Tags Tags
    Light Wave
RonLevy
Messages
16
Reaction score
0
In attempting to explain QT to interested students, it seems like light waves in the double-slit experiment, and in the Three Polarizer Paradox seem "mixed-up" about whether you are dealing with one of Maxwell's waves, or one of Schrodinger's waves. Which is it?-And how can we know? Einstein called the waves of Schrodinger's equation "A ghost field" since they are probability waves. Please explain this apparent confusion between the real wave and the ghost wave.
 
Physics news on Phys.org
RonLevy said:
In attempting to explain QT to interested students, it seems like light waves in the double-slit experiment, and in the Three Polarizer Paradox seem "mixed-up" about whether you are dealing with one of Maxwell's waves, or one of Schrodinger's waves. Which is it?-And how can we know? Einstein called the waves of Schrodinger's equation "A ghost field" since they are probability waves. Please explain this apparent confusion between the real wave and the ghost wave.
I'm just a student that didn't even take QM yet. My thoughts: The double slit phenomena can both be explained by classical physics (what you call Maswell's waves) and QM (what you call Schrodinger's waves). Both models predict accurate results so both are a valid way to explain the double slits experiment.
 
The problem with using Maxwell's equations for a single photon or a small collection of single photons interacting with a small collection of molecules in the polarizers or barrier is that to get accurate solutions you need an accurate model of the charges. In smaller and smaller spaces a point model for the charge becomes less and less accurate apparently. A more accurate model for a charge probably requires a 3D spatial extension and a consideration of how energy flows around and is affected by the charge.

Schrödinger's equation could be interpreted as makeshift model or workaround for the lack of detailed information about how the charge looks and behaves interacting with other particles or energy.
 
PhilDSP said:
The problem with using Maxwell's equations for a single photon or a small collection of single photons interacting with a small collection of molecules in the polarizers or barrier is that to get accurate solutions you need an accurate model of the charges. In smaller and smaller spaces a point model for the charge becomes less and less accurate apparently. A more accurate model for a charge probably requires a 3D spatial extension and a consideration of how energy flows around and is affected by the charge.

Schrödinger's equation could be interpreted as makeshift model or workaround for the lack of detailed information about how the charge looks and behaves interacting with other particles or energy.

Schrodingers equation is induced from the results so its really more of a its maths stupid! Answer to the light spectra.
 
Maxwell's waves are useful in a lot of situations and can be used to calculate the interference pattern in the double-slit experiment and the light intensity in the Three Polariser 'Paradox'.

There is no actual paradox, because Maxwell's equations correctly predict the light intensity. I think the reason it is called a paradox is because it seems non-intuitive.

Quantum mechanics also correctly predicts the interference pattern of the double-slit experiment and the intensity in the Three Polariser experiment.

So the classical equation gives the same answer as the quantum equations. This is because the experiments are within the classical limit. As soon as we start talking about single photons, we leave the classical limit. For example, maxwell's waves don't explain the photoelectric effect.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top