Snazzy
- 470
- 0
[SOLVED]Mean of a probability distribution
\int^{b}_{a}p(x)dx=1
V=M_2-\bar{x}^2
\bar{x}^2=\int^{b}_{a}xp(x)dx
M_2=\int^{b}_{a} x^2p(x)dx
I found that c=\frac{1}{b} which is a right answer.
What I did next was:
<br /> \bar{x}=\int^{b}_{-b}xp(x)dx
=\int^{0}_{-b}x(\frac{cx}{b}+c)dx\ + \int^{b}_{0}x(\frac{-cx}{b}+c)dx
= \int^{0}_{-b}\frac{cx^2}{b}\ +\ c\ dx\ + \int^{b}_{0}\frac{-cx^2}{b}\ +\ c\ dx
=\left[ \frac{cx^3}{3b}+cx \right]_{-b}^{0}+\left[ \frac{-cx^3}{3b}+cx \right]_{0}^{b}
=\frac{-2cb^3}{3b}+{2cb}
=\frac{-2b^2}{3b}+\frac{2b}{b}
=\frac{-2b}{3}+2<br />
But the answer says that \bar{x}=0
If I can manage to get x-bar, I can manage to get the variance and SD.
Homework Statement
Homework Equations
\int^{b}_{a}p(x)dx=1
V=M_2-\bar{x}^2
\bar{x}^2=\int^{b}_{a}xp(x)dx
M_2=\int^{b}_{a} x^2p(x)dx
The Attempt at a Solution
I found that c=\frac{1}{b} which is a right answer.
What I did next was:
<br /> \bar{x}=\int^{b}_{-b}xp(x)dx
=\int^{0}_{-b}x(\frac{cx}{b}+c)dx\ + \int^{b}_{0}x(\frac{-cx}{b}+c)dx
= \int^{0}_{-b}\frac{cx^2}{b}\ +\ c\ dx\ + \int^{b}_{0}\frac{-cx^2}{b}\ +\ c\ dx
=\left[ \frac{cx^3}{3b}+cx \right]_{-b}^{0}+\left[ \frac{-cx^3}{3b}+cx \right]_{0}^{b}
=\frac{-2cb^3}{3b}+{2cb}
=\frac{-2b^2}{3b}+\frac{2b}{b}
=\frac{-2b}{3}+2<br />
But the answer says that \bar{x}=0
If I can manage to get x-bar, I can manage to get the variance and SD.
Last edited: