- #1
cwill53
- 220
- 40
- Homework Statement
- A load Q of 60lbs is held in equilibrium by a counterbalance P attached to the end of a rope ABC weighing 10lbs which passes around a pulley. Determine the weight of the counterbalance P, the tensions $$F_{A}$$ and $$F_{C}$$ in the end sections, and the tension in the middle section B of the rope, if (1) the ends A and C are at the same level; (2) the end A is at the highest position; (3) the end A is at the lowest position. Neglect the stiffness of the rope, the radius of the pulley, and friction.
The answers and diagram are in the following photo.
- Relevant Equations
- $$\sum \vec{F}=0$$
$$\sum \vec{F}=m\vec{a}$$
I understand how they might have got to these answers but I'm still kind of shaky on how the mass of the rope plays a role in the tension at point B, and how to mathematically represent the tension at any point along the rope; I know the tension varies because the rope has mass. If I was to consider friction, what would should be done differently?For part 1, I know intuitively that Q and P have to be the same weight because they're at the same level and the system is in equilibrium. I also know that $$\vec{F_{A}}=\vec{F_{_{C}}}=60lbs(-\hat{y})$$ because the weights Q and P are not holding up the weight of the rope.