cleggy
- 28
- 0
Homework Statement
I have to find the minimum and maximum values of the uncertainty of \Deltax and specify the times after t=0 when these uncertainties apply.
Homework Equations
The wave function is Ψ(x, 0) = (1/√2) (ψ1(x)+ iψ3(x))
and for all t is Ψ(x, t) = (1/√2) (ψ1(x)exp(-3iwt/2+ iψ3(x)exp(-7iwt/2)
The Attempt at a Solution
the expectation value <x> = 0 ( given in my text )
hence \Deltax= \sqrt{}<x^2>
using the sandwich integral
\int^{\infty}_{-\infty}ψ1\ast(x) x^2 ψ1(x) dx = \frac{3}{2} a^2
\int^{\infty}_{-\infty}\psi3\ast(x) x^2 \psi3(x) dx = \frac{7}{2}a^2
\int^{\infty}_{-\infty}\psi3\ast(x) x^2 \psi1 (x) dx = \int^{\infty}_{-\infty}\psi\ast1(x) x^2 \psi3 dx = \sqrt{\frac{3}{2}}a^2
where a is the length parameter of the oscillator.
Where do I go from here?
Last edited: