High School Misleading Textbook Equation for vf^2=vi^2 + 2ad

  • Thread starter Thread starter PhysTeacher88
  • Start date Start date
  • Tags Tags
    Kinematics Textbook
Click For Summary
The discussion critiques the textbook equation vf^2=vi^2 + 2ad for uniform acceleration, noting its lack of vector representation, which can lead to confusion in problem-solving. The author highlights that treating acceleration and displacement as scalars can yield incorrect negative distance values in certain scenarios, such as a ball thrown upward. A response clarifies that the initial velocity is positive while acceleration is negative, emphasizing the importance of direction in one-dimensional motion. The equation is identified as a special case of the work-energy theorem, which is scalar in nature. Overall, the conversation raises concerns about the potential oversight in teaching this equation without vector consideration.
PhysTeacher88
Messages
1
Reaction score
0
The textbook (Nelson 11) at my school lists the "big 5" equations for uniform acceleration. In all but one, they use vectors.

For vf^2=vi^2 + 2ad, the opt not to use vectors.

Is there a deep reason why we would not want to use the vectors?

I understand that when you square the velocity, the direction information is lost, however, without making the acceleration and the displacement vectors (textbook reads distance because it's not a vector), students will not get questions like this correct:

A ball is thrown up at 10m/s, how high will it go?

If I treat everything as scalar, we get:

(0m/s) = (10m/s)^2 + (9.8)d

the distance ends up being a negative value, which is clearly not true given the context.

If they at least made the "a" and delta "d" vectors, they would not run into this problem.

I'm guess they took this formula from conservation of energy, rather than thinking about this from a kinematics perspective.

Am I missing something, or is this an oversight?

Cheers,

K
 
Physics news on Phys.org
PhysTeacher88 said:
The textbook (Nelson 11) at my school lists the "big 5" equations for uniform acceleration. In all but one, they use vectors.

For vf^2=vi^2 + 2ad, the opt not to use vectors.

Is there a deep reason why we would not want to use the vectors?

I understand that when you square the velocity, the direction information is lost, however, without making the acceleration and the displacement vectors (textbook reads distance because it's not a vector), students will not get questions like this correct:

A ball is thrown up at 10m/s, how high will it go?

If I treat everything as scalar, we get:

(0m/s) = (10m/s)^2 + (9.8)d

the distance ends up being a negative value, which is clearly not true given the context.

If they at least made the "a" and delta "d" vectors, they would not run into this problem.

I'm guess they took this formula from conservation of energy, rather than thinking about this from a kinematics perspective.

Am I missing something, or is this an oversight?

Cheers,

K
What you're missing is that you have the initial velocity, ##v_i##, being positive, which means that ##a## must be negative. So here ##a = -9.8 m/sec^2##.

Also, the probable reason for not using vectors is that they are dealing with motion in one dimension.
 
It’s a special case of the work-energy theorem which is a scalar equation.
ΔKE= net Work (=F⋅d for constant F)
 
Last edited:
Mark44 said:
What you're missing is that you have the initial velocity, ##v_i##, being positive, which means that ##a## must be negative. So here ##a = -9.8 m/sec^2##.

Correct.

Also, notice that d also have a sign. It is positive if the motion was upward, and negative if the motion was downward.
 
I built a device designed to brake angular velocity which seems to work based on below, i used a flexible shaft that could bow up and down so i could visually see what was happening for the prototypes. If you spin two wheels in opposite directions each with a magnitude of angular momentum L on a rigid shaft (equal magnitude opposite directions), then rotate the shaft at 90 degrees to the momentum vectors at constant angular velocity omega, then the resulting torques oppose each other...

Similar threads

  • · Replies 5 ·
Replies
5
Views
7K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K