B Misleading Textbook Equation for vf^2=vi^2 + 2ad

  • B
  • Thread starter Thread starter PhysTeacher88
  • Start date Start date
  • Tags Tags
    Kinematics Textbook
AI Thread Summary
The discussion critiques the textbook equation vf^2=vi^2 + 2ad for uniform acceleration, noting its lack of vector representation, which can lead to confusion in problem-solving. The author highlights that treating acceleration and displacement as scalars can yield incorrect negative distance values in certain scenarios, such as a ball thrown upward. A response clarifies that the initial velocity is positive while acceleration is negative, emphasizing the importance of direction in one-dimensional motion. The equation is identified as a special case of the work-energy theorem, which is scalar in nature. Overall, the conversation raises concerns about the potential oversight in teaching this equation without vector consideration.
PhysTeacher88
Messages
1
Reaction score
0
The textbook (Nelson 11) at my school lists the "big 5" equations for uniform acceleration. In all but one, they use vectors.

For vf^2=vi^2 + 2ad, the opt not to use vectors.

Is there a deep reason why we would not want to use the vectors?

I understand that when you square the velocity, the direction information is lost, however, without making the acceleration and the displacement vectors (textbook reads distance because it's not a vector), students will not get questions like this correct:

A ball is thrown up at 10m/s, how high will it go?

If I treat everything as scalar, we get:

(0m/s) = (10m/s)^2 + (9.8)d

the distance ends up being a negative value, which is clearly not true given the context.

If they at least made the "a" and delta "d" vectors, they would not run into this problem.

I'm guess they took this formula from conservation of energy, rather than thinking about this from a kinematics perspective.

Am I missing something, or is this an oversight?

Cheers,

K
 
Physics news on Phys.org
PhysTeacher88 said:
The textbook (Nelson 11) at my school lists the "big 5" equations for uniform acceleration. In all but one, they use vectors.

For vf^2=vi^2 + 2ad, the opt not to use vectors.

Is there a deep reason why we would not want to use the vectors?

I understand that when you square the velocity, the direction information is lost, however, without making the acceleration and the displacement vectors (textbook reads distance because it's not a vector), students will not get questions like this correct:

A ball is thrown up at 10m/s, how high will it go?

If I treat everything as scalar, we get:

(0m/s) = (10m/s)^2 + (9.8)d

the distance ends up being a negative value, which is clearly not true given the context.

If they at least made the "a" and delta "d" vectors, they would not run into this problem.

I'm guess they took this formula from conservation of energy, rather than thinking about this from a kinematics perspective.

Am I missing something, or is this an oversight?

Cheers,

K
What you're missing is that you have the initial velocity, ##v_i##, being positive, which means that ##a## must be negative. So here ##a = -9.8 m/sec^2##.

Also, the probable reason for not using vectors is that they are dealing with motion in one dimension.
 
It’s a special case of the work-energy theorem which is a scalar equation.
ΔKE= net Work (=F⋅d for constant F)
 
Last edited:
Mark44 said:
What you're missing is that you have the initial velocity, ##v_i##, being positive, which means that ##a## must be negative. So here ##a = -9.8 m/sec^2##.

Correct.

Also, notice that d also have a sign. It is positive if the motion was upward, and negative if the motion was downward.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?

Similar threads

Replies
9
Views
6K
Replies
5
Views
6K
Replies
8
Views
2K
Replies
7
Views
2K
Replies
2
Views
4K
Replies
13
Views
2K
Replies
6
Views
1K
Back
Top