Most likely location of a particle versus expected value of

AI Thread Summary
The discussion centers on the distinction between the most likely position of a particle and its expected value in quantum mechanics, as presented in Griffiths' textbook. The participant initially struggles to reconcile the answers for a wave function problem, questioning the solution manual's interpretation of the most probable value versus the expected value. They highlight that while the most probable value corresponds to the mode of a distribution, the expected value represents the mean, which can differ significantly, especially in non-normal distributions. An example is provided, illustrating that the expected value can be a non-viable outcome, emphasizing the complexity of quantum measurements. The conversation concludes with an acknowledgment of the importance of understanding these statistical concepts in quantum mechanics.
Prometheus18
Messages
3
Reaction score
1
Hello. I'm using Griffiths' introductory textbook on quantum mechanics, which I have just begun, and have arrived at a question on a simple wave function:

15383804847826568917234736710885.jpg


The answer to the first question I know to be √(3/b).

The answer to part e is (2a + b) / 4.

My problem is that I don't understand how there is any difference between the most likely position of the particle on the X axis and its expected value, given above for part e.

I have checked the solution manual and its its answer to part c was just 'a', which was my initial instinct, because the graph reaches its maximum at a. But this seems to me to be contrary to the notion of an expected value which, among other things, in a probability context should be the most likely value.

Has the solutions manual got it wrong, or have I?
 

Attachments

  • 15383804847826568917234736710885.jpg
    15383804847826568917234736710885.jpg
    22.5 KB · Views: 1,333
Physics news on Phys.org
In the case of a normal distribution, the most probable value is the same as the expectation value, but this is not the case for most distributions.

If you look at the Wikipedia page on multimodal distribution, you will see figures where this is obvious: when you have two humps more or less symmetrical, the most probable value will be at the top of one of the bumps but the expectation value near the middle of the two bumps.

(Note: by definition, the most probable value is the value where the probability distribution is the highest.)
 
  • Like
Likes Prometheus18
Prometheus18 said:
Hello. I'm using Griffiths' introductory textbook on quantum mechanics, which I have just begun, and have arrived at a question on a simple wave function:

View attachment 231470

The answer to the first question I know to be √(3/b).

The answer to part e is (2a + b) / 4.

My problem is that I don't understand how there is any difference between the most likely position of the particle on the X axis and its expected value, given above for part e.

I have checked the solution manual and its its answer to part c was just 'a', which was my initial instinct, because the graph reaches its maximum at a. But this seems to me to be contrary to the notion of an expected value which, among other things, in a probability context should be the most likely value.

Has the solutions manual got it wrong, or have I?

In general, the expected value is the mean (or average) and the most likely is called the mode. As a simple example, the expected value of the roll of a die is 3.5, although all values from 1-6 are equally likely. And, of course, you can't actually ever throw a 3.5. Sometimes, therefore, the expected value is not a possible or valid outcome.
 
  • Like
Likes Prometheus18 and DrClaude
PeroK said:
Sometimes, therefore, the expected value is not a possible or valid outcome.
Good point. This can be the case in quantum mechanics, where you for instance have spin-1/2 in states such that ##\langle S_z \rangle = 0## or ##\langle S_z \rangle = -\hbar/4##, while you can only ever measure ##\hat{S}_z## as ##\hbar/2## or ##-\hbar/2##.
 
  • Like
Likes PeroK
Yes, thanks both of you. I've just been having a slightly dull morning; I should know the difference between a mode and mean by now!
 
  • Like
Likes PeroK
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top