haruspex said:
I take L-shaped to mean OBA is a right angle. The normal force at A lies in a plane normal to BA, and that does not include O
The surface in contact is cylindrical. So, the normal force will be in the ##\hat s ## . At some angle ##\phi## , the normal force could be along AO, couldn't it?
Wrt rod frame,
Let's say that at time t, the sleeve is moving towards B from A and the spring is elongated with elongation l
e. The direction from A to B is defined to be ## \hat l ##. l is the distance of the sleeve from A where A is the other end of the rod.
velocity of the sleeve = ## \vec v_r = \dot l \hat l##
acceleration of the sleeve = ## \vec a_r = \ddot l \hat l##
Now, eqn. of motion is given as
## \vec F_n = \vec F_p + \vec F_f ##
where ##\vec F_n ## = net fofrce acting on the sleeve wrt the rod frame
## \vec F_p ## = net physical force acting on the system =## k l_e \hat l ## i.e.spring force + ##\vec f ## i.e. friction + ## \vec N ## i,e normal force + m ##\vec g## where k is the spring constant
## \vec F_f ##= net fictitious force acting on the system = ## m\omega^2 r~ \hat r - 2m\omega ~\hat z \times \dot l~\hat l##
## m\ddot l \hat l = k l_e \hat l - f \hat l +\vec N + m\vec g + m\omega^2 r~ \hat r - 2m\omega ~\hat z \times \dot l~\hat l##
Taking ## \vec N + m\vec g =0##
##\ddot l \hat l= \{kl_e - \frac f m \}\hat l+ \omega^2 r~ \hat r - 2\omega ~\hat z \times \dot l~\hat l##
Note that ## \dot l = \frac {dl} {dt} ## looks as big form of small i.
Is this correct so far?Now,
##\ddot l = - \ddot l_e##
##\dot l = - \dot l_e##
## l= AB -\{ l_0 + l_e\} ##
## r = \sqrt { \{l_0 + l_e \}^2 + {OB}^2 } ##
## \hat z \times \hat l = \hat m## where ##\hat m ## is a unit vector along BO
## \hat r = \cos \theta \hat m +\sin \theta \hat l ## where ## \theta## is the angle which ##\hat r## makes with BO.
Taking friction to be 0,
##\ddot l \hat l= \{kl_e - \frac f m \}\hat l+ \omega^2 r~ \hat r - 2\omega ~\hat z \times \dot l~\hat l##
##- \ddot l_e \hat l= kl_e\hat l+ \omega^2 \sqrt { \{l_0 + l_e \}^2 + {OB}^2 }~\{\cos \theta \hat m +\sin \theta \hat l \} + 2\omega \dot l_e ~\hat m##
we have the following two equations,
##- \ddot l_e = kl_e+ \omega^2 \sqrt { \{l_0 + l_e \}^2 + {OB}^2 }\sin \theta ##
##0= \omega^2 \sqrt { \{l_0 + l_e \}^2 + {OB}^2 }~\cos \theta + 2\omega \dot l_e##
Is it correct so far?