My Proof of Structure Theorem for Finite Abelian Groups

Site
Messages
26
Reaction score
0
Hello! If anybody has a minute, I'd appreciate a quick look-through of my proof that a finite abelian group can be decomposed into a direct product of cyclic subgroups. I'm new to formal writing (as well as Latex) and all feedback is greatly appreciated!

Thanks in advance for your time!

http://www.scribd.com/doc/130897466/Structure-of-Finite-Abelian-Groups-Brian-Blake
 
Physics news on Phys.org
Your Lemma 1 is not valid. Consider for example a cyclic group ##G = \langle x\rangle## with ##|G| = p^2##. The subgroup ##H = \langle x^p \rangle## has order ##p##, so ##G/H## and ##H## are both cyclic with order ##p##. But clearly ##G/H \times H## is not cyclic; it has order ##p^2## but any element has order ##1## or ##p##.

The problem is your claim that ##\phi(g_1 g_2) = (x^{k+j}H, h_1 h_2)##. This is not true in general. Let's take a concrete example with ##G## as above.

Suppose ##p = 3##, so ##G = \{e, x, x^2, \ldots x^8\}##, and ##H = \{e, x^3, x^6\}##, and ##G/H = \{H, xH, x^2 H\}##.

Take ##g_1 = x^{4} = x^1 x^3 \in x H## and ##g_2 = x^{5} = x^2 x^3 \in x^2 H##. Then ##g_1 g_2 = x^{9} = e = x^0 x^0 \in H##.

Then:
$$\phi(g_1) = (x H, x^{3})$$
$$\phi(g_2) = (x^2 H, x^{3})$$
but
$$\phi(g_1 g_2) = (H, x^{0})$$
whereas
$$\phi(g_1)\phi(g_2) = (x H \cdot x^2 H, x^{3}\cdot x^{3}) = (H, x^{6}) \neq \phi(g_1 g_2)$$
 
Last edited:
Sorry, I had to make a few minor edits. Please refresh if you've already read the post.
 
Thank you very much! I guess I was thinking incorrectly that the order of x was also the order of the quotient group. Back to the drawing board!
 
Site said:
Thank you very much! I guess I was thinking incorrectly that the order of x was also the order of the quotient group. Back to the drawing board!
No problem, feel free to post an update when you have a revised proof. It was a good attempt - I knew the conclusion of Lemma 1 was wrong, but it took me a while to spot the problem with your proof.

Also, your writing style and Latex are good, so nothing to worry about there.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top