(Need Verifications) Wear Rate for adhesive rubbing of 2 materials

  • Thread starter Thread starter nomisme
  • Start date Start date
  • Tags Tags
    Materials Rate
AI Thread Summary
The discussion revolves around verifying equations related to the wear rate of rubber and fiberglass when they rub against each other. The main focus is on calculating the thickness loss of rubber as it deforms under load, using an integral approach to account for changing strain rates. The proposed wear formula considers adhesive wear and incorporates variables such as loading force, hardness, and surface area. Concerns are raised about the assumptions made, particularly the neglect of fiberglass deformation and the impact of external factors like grit or moisture, which could alter wear dynamics. Overall, the equations may need adjustments to account for real-world conditions affecting wear.
nomisme
Messages
28
Reaction score
0
Dear all members,

I just need anyone of you to verify my system and some equations I have worked out for my problem below. Please feel free to point out any flaws in my reasoning and formula applications.

Problem Definition: Two flat blocks (different materials, Fiberglass and Rubber) rubbing against each other on 1 flat plane in 1 direction. Find out when the amount of surface thickness loss of rubber reaches our defined limit, ℝ.

Assumptions:
1) Only Rubber deforms and fiberglass's deformation is neglected.

Logics behind:
1) During the wearing process , strain rate/loading force decreases as the thickness of rubber decreases SO the equation has to be an integral instead. It should be defined in the range from 0 to X(meter). Presumably, when rubber has rubbed against fiberglass for distance x, the amount of thickness loss on rubber is equal to our designated limit, ℝ.

Formula:

Wear formula (I assume it is an adhesive wear?):
w=k*L/H where k is a wear constant of rubber; L is the loading force and H is the hardness of material.
w will be in terms of Volume removed due to wear Per distance traveled by rubber(Contact surface, A) or fiberglass(infinite large Area).
Re-arrange w a little bit, dividing it by Area, A, and it become wt for which the unit is surface thickness loss/ distance traveled)
Equations Work Flow:Total thickness loss from total distance x traveled equal to ℝ :

(intergral defined on range 0 to x)

∫ wt dx= ∫ (k*L/(H*A) ) dx<= ℝ

where
a) L= σ/A= Eε/A
b) ε=dL / L .....[dL denotes for current compressed thickness which is equal to dL0- ∫ wt dx(amount of thickness loss) WHILE L denotes for the current thickness of the rubber which is equal to L0(original thickness)- ∫ wt dx(amount of thickness loss)]Define ε as a function of x (strain rate after traveling distance x)
Turns out ε is a function of itself which is a function of x.

Strain rate at distance x can be given by:

ε= (dL0- ∫ wt dx)/ (L0-∫ wt dx)

Becomes

ε= [dL0- ∫(E*k*ε)/(A*H) dx]/ [L0-∫(E*k*ε)/(A*H) dx]

Then we solve ε:
ε becomes a quadratic equationthen find ε in terms of those constants and variable x.

then put ε into the original function below to find x,

∫ wt dx =∫ (k*L/(H*A) ) dx <= ℝ where L=σ/A=(E*ε)/Aum...is that workable...or just plain wrong?
 
Last edited:
Engineering news on Phys.org
nomisme said:
Assumptions:
1) Only Rubber deforms and fiberglass's deformation is neglected.
It is counter-intuitive but you must then consider the situation where grit or glass becomes embedded in the deformable rubber. That will protect the rubber and wear the resin binding the glass. Your assumption magnifies this effect.

A wooden shaft running in an iron bearing will cut it's way through the hard iron by the accumulation of abrasive material in the surface of the softer wood.

Your equations may be applicable to a clean world where there is no dust or grit. If water is present the rubber will not wear, it will simply generate heat because the water film separates the different materials.
 
Hi all, I have a question. So from the derivation of the Isentropic process relationship PV^gamma = constant, there is a step dW = PdV, which can only be said for quasi-equilibrium (or reversible) processes. As such I believe PV^gamma = constant (and the family of equations) should not be applicable to just adiabatic processes? Ie, it should be applicable only for adiabatic + reversible = isentropic processes? However, I've seen couple of online notes/books, and...
Thread 'How can I find the cleanout for my building drain?'
I am a long distance truck driver, but I recently completed a plumbing program with Stratford Career Institute. In the chapter of my textbook Repairing DWV Systems, the author says that if there is a clog in the building drain, one can clear out the clog by using a snake augur or maybe some other type of tool into the cleanout for the building drain. The author said that the cleanout for the building drain is usually near the stack. I live in a duplex townhouse. Just out of curiosity, I...
I have an engine that uses a dry sump oiling system. The oil collection pan has three AN fittings to use for scavenging. Two of the fittings are approximately on the same level, the third is about 1/2 to 3/4 inch higher than the other two. The system ran for years with no problem using a three stage pump (one pressure and two scavenge stages). The two scavenge stages were connected at times to any two of the three AN fittings on the tank. Recently I tried an upgrade to a four stage pump...
Back
Top