Non-constant acceleration problem.

  • Thread starter Thread starter linuxux
  • Start date Start date
  • Tags Tags
    Acceleration
linuxux
Messages
133
Reaction score
0

Homework Statement



i need to find the distance traveled after 5 seconds when acceleration is not constant. the equation we have are v(t)=3t^2+2t . Any help appreciated thanks, btw, i found this page, http://hyperphysics.phy-astr.gsu.edu/hbase/acons.html#c3, but I am not sure how to implement the equation.
 
Physics news on Phys.org
no bother, got it, thanks anyway!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top