How Does Capacitance Change with Angle in Non-Parallel Plate Capacitors?

  • Thread starter Thread starter Fusilli_Jerry89
  • Start date Start date
  • Tags Tags
    Capacitor Plate
AI Thread Summary
The discussion focuses on calculating the capacitance of a non-parallel plate capacitor with square plates angled at theta. For small angles, the capacitance can be approximated using the formula C = [(epsilon)(a^2)/d][1-(a(theta)/2d)]. Participants are trying to understand how to derive the capacitance for individual strips of the plates, specifically how to express it as C = (epsilon)a(deltax)/y. The conversation highlights the use of Gauss' law and the division of the capacitor into segments for analysis. Clarification is sought on the methodology for calculating capacitance for each strip in this configuration.
Fusilli_Jerry89
Messages
158
Reaction score
0

Homework Statement


A capacitor has square plates, each of side a, making an angle theta with each other. Shown that for small theta the capacitance is given by: C = [(epsilon)(a^2)/d][1-(a(theta)/2d].


Homework Equations


C = q/V
gauss' law


The Attempt at a Solution


I see how you can divide up the strip into N segments each with length a/N. But how do u get the capacitance for each strip to be C = (epsilon)a(deltax)/y ? I know how to do the rest and I know for sure that that's the right way to do it, but how do u get the capacitance for each strip?)
 
Physics news on Phys.org
See that C = \epsilon*S/d, in your case for each strip S = a*dx and d = y.
 
I'm also troubled with this question, I know it has been a long time, but maybe one of you can explain me the answer?

Omer
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top