Nonlinear spring energy problem

AI Thread Summary
The problem involves calculating the change in potential energy of a nonlinear spring described by the force equation F=40x-6x^2 when stretched 2 meters. The initial attempt to find potential energy using U=.5kx^2 was incorrect due to the nonlinear nature of the spring. The correct approach involves integrating the force function to find U, resulting in U=-20x^2 + 2x^3. After substituting x=2, the change in potential energy is determined to be 64 J, indicating the work done on the spring. This highlights the importance of using the correct method for nonlinear spring systems.
lzh
Messages
109
Reaction score
0

Homework Statement


The stretch of a nonlinear spring by an amount x requires a force F given by:
F=40x-6x^2
where F is in Newtons and x is in meters.

What is the change in potential energy U when the spring is stretched 2m from its equilibrium position?


Homework Equations


U=.5kx^2
= .5(kx)x
F=kx

The Attempt at a Solution


F=40(2)-6(2)^2=80-24=56N
U=.5(56N)(2)=56J

Thats what I thought would work, but 56J is no the correct answer. What am I doing wrong?
 
Physics news on Phys.org
F=-dU/dx

use this
 
So it'd be:
56N(2m)=-dU
dU=-112?
Am I not getting this?
 
lzh said:

Homework Statement


The stretch of a nonlinear spring by an amount x requires a force F given by:
F=40x-6x^2
where F is in Newtons and x is in meters.

What is the change in potential energy U when the spring is stretched 2m from its equilibrium position?


Homework Equations


U=.5kx^2
= .5(kx)x
F=kx

The Attempt at a Solution


F=40(2)-6(2)^2=80-24=56N
U=.5(56N)(2)=56J

Thats what I thought would work, but 56J is no the correct answer. What am I doing wrong?
The trick here is to recognize that F=40x-6x^2 which is not the same as F=kx.

Now U(x) = \int^x_0\,F(x) dx\,=\,\int^x_0\,kx\,dx

http://hyperphysics.phy-astr.gsu.edu/hbase/pespr.html#pe2

http://hyperphysics.phy-astr.gsu.edu/hbase/pegrav.html#pe
 
Oh, I see!

Thanks, I got it!
 
f=-dU/dx
integrating both sides
20x^2 -2x^3=-U
put x=2
U=-64J

change would be 64...and work done would be 64 J
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top