Nonuniform Semicircle of Charge

  • Thread starter Thread starter GenDis
  • Start date Start date
  • Tags Tags
    Charge
AI Thread Summary
The discussion revolves around calculating the x component of the electric field at the origin due to a non-uniformly charged semicircle. The charge density varies with angle, leading to a total charge of -4.43E-6 C. Initial assumptions about symmetry suggested the x component might be zero, but the presence of non-uniform charge distribution means this is not the case. The user attempted to find the electric field using integration but questioned whether they set up the integral correctly, particularly regarding the need for a cos(theta) factor. Clarification on the integration process and the correct application of charge density in the calculations is needed to arrive at the correct answer.
GenDis
Messages
2
Reaction score
0

Homework Statement



A non-uniformly charged semicircle of radius R=23.3 cm lies in the xy plane, centered at the origin, as shown (picture shows circle going from 0 to pi). The charge density varies as the angle (in radians) according to =−385, where has units of C/m. What is the x component of the electric field at the origin?

Homework Equations



dq = λ ds
dE = kdq/(r^2)


The Attempt at a Solution



I already found the total charge to be -4.43E-6 C. I know the charge is nonuniformly distributed, but given symmetry shouldn't the x component simply end up being 0?
 
Physics news on Phys.org
No, it doesn't have to be zero. Imagine that most of the charge is located on one side, or if on one side it's more to the top and the other has more to the side; the x-component wouldn't be 0.
 
Ya that makes sense, I wasn't thinking. So here's what I got when I actually went after the problem.

dE = kq/(r^2), but since dq = λds we have

dE=kλds / r^2

integrating both sides from 0 to pi gave me

(k)(-3.85 E-9)*(pi^2) / R

Not the right answer, did I simply integrate incorrectly or was it not set up correctly? Do I need a cos(theta) in the integral?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top