Calculating Normal Force on Block on Wedge

AI Thread Summary
A block on a wedge accelerates horizontally without friction, requiring a detailed understanding of the normal force acting on it. The normal force is calculated as mg/cos(theta) because it must balance the gravitational force while also providing the necessary horizontal acceleration. The vertical component of the normal force cancels out the weight of the block, ensuring it does not slide down. Without friction, the only forces acting are the weight and the normal force, leading to a net force that accelerates the block horizontally. Understanding these dynamics is crucial for solving related physics problems effectively.
DDS
Messages
171
Reaction score
0
A block of mass m is placed on a wedge. The wedge is pushed along a horizontal surface with accelertation a, so that the block stays in place on the wedge, even though there is no friction between the block and the wedge. The normal force acting on the block during the acceleration is equal to:

mg/cos(theta)

i kind of guessed this answer but now when i go sti down and try to understand why is mg/cos(theta) not just simply mgcos(theta) i don't know why.

can anyone explain this to me
 
Physics news on Phys.org
Consider that for the block not to slide down the wedge it must be in vertical equilibrium.
 
can anyone give me adetailed explanation its just my exam is in 2 days so not to bash you DOC but I am looking for a detailed explanation
 
DDS said:
can anyone give me adetailed explanation its just my exam is in 2 days so not to bash you DOC but I am looking for a detailed explanation

Draw yourself a diagram of the block and the forces acting on it. There are only two. One is its weight and the other is the normal force acting perpendicular to the surface of the wedge. Without friction, the wedge cannot exert a force in any other direcion. The sum of those two forces is the net force acting on the block, causing it to accerlerate horizontally. What does that (and Doc's suggestion) tell you about the vertical component of the net force?
 
it has a component i both the x and y plane
 
DDS said:
it has a component i both the x and y plane
If the net force had a vertical component, the mass would accelerate in the vertical (y) direction. It is only accelerating in the horizontal (x) direction. That tells you the vertical component of the normal force cancels the vertical gravitiational force. The reusltant of the normal force and gravity must be the horizontal component of the normal force, and that force provides the acceleration of the block.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.

Similar threads

Back
Top