Normal modes of Mass and two Spings

xago
Messages
60
Reaction score
0

Homework Statement



Consider a mass M whose motion is confined to a flat, smooth two-dimensional surface. Label the locations in this surface using the Cartesian coordinates (x, y). The mass is attached to two identical springs, each of length ℓ and spring constant k. One spring has one of its ends fixed to the point (-L, 0) and the other spring has one of its ends fixed to the point (L, 0). Find the normal modes of this system when ℓ < L.

Homework Equations



F=ma , T =-kx

The Attempt at a Solution



Well first I've my goal is to find the EOM of the system then plug in the solution to the EOM to find the normal modes. Since ℓ < L , then the springs are stretched in equilibrium and provide constant tension of T = -2k(L- ℓ). Taking into account when the mass is displaced a distance x from equilibrium also provides additional tension T = -2kx. Therefor my EOM is

ma = -2k(L- ℓ) + (-2kx)

However when I plug in a solution of the form x(t) = Acos(wt) it doesn't seem easy to solve.
Can someone please tell me if I am on the right track and if my EOM is correct?
 
Physics news on Phys.org
You also need to consider motion in the vertical direction.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top